Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DanAlex
Xem chi tiết
nguyễn vũ gia hưng
8 tháng 3 2021 lúc 20:30

tên sai kìa,EKAWADA CONAN mà

Khách vãng lai đã xóa
Lữ Hùng Hổ
Xem chi tiết
Thanh Thảoo
Xem chi tiết
Nguyễn Thị Mát
26 tháng 11 2019 lúc 20:56

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)=\left(x,y,z\right)\)

Khi đó :
\(Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)

Ta có :

\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b\left(c-a\right)-\left(c-a\right)\left(c+a\right)}{ca}\)

\(=\frac{b\left(c-a\right)-\left(c-a\right)\left(-b\right)}{ac}=\frac{2b\left(c-a\right)}{ca}\) ( do \(a+b+c=0\))

\(\Rightarrow\frac{x+y}{z}=\frac{2b\left(c-a\right)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)

Hoàn toàn tương tự 

\(\frac{y+z}{x}=\frac{2c^3}{abc};\frac{x+z}{y}=\frac{2a^3}{abc}\)

Do đó :

\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3\)

\(=3+\frac{2\left[\left(-c\right)^3-3ab\left(-c\right)^3+c^3\right]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

Ta có đpcm

Khách vãng lai đã xóa
Trần Lê Anh Quân
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 8 2019 lúc 20:46

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)

\(=\frac{b}{a-c}+\frac{c}{b-a}\)

\(=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 1 )
Tương tự,ta có:

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-ba+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 2 )
\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+cb-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 3 )
Cộng vế theo vế của ( 1 );( 2 );( 3 ) suy ra đpcm 

đoàn danh dũng
Xem chi tiết
Đào Huy Hoàng
Xem chi tiết
Lê Hoàng Sơn
22 tháng 4 2019 lúc 21:03

*Đặt P = (a-b)/c + (b-c)/a + (c-a)/b, ta có:
P = (a-b)/c + (b-c)/a + (c-a)/b
=> abc.P = ab(a-b) + bc(b-c) + ca(c-a)
= ab(a-b) + bc(b-a + a-c) + ca(c-a) 
= ab(a-b) - bc(a-b) - bc(c-a) + ca(c-a) 
= b(a-b)(a-c) + c(c-a)(a-b) 
= (a-b)(a-c)(b-c) 
=> P = (a-b)(a-c)(b-c)/abc 
*Đặt Q = c/(a-b) + a/(b-c) + b/(c-a), ta có:
Vì a+b+c = 0 => a+b = -c ; b+c = -a ; c+a = -b
Q = c/(a-b) + a/(b-c) + b/(c-a) 
=> (a-b)(b-c)(c-a).Q = c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c) 
= c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c) 
= c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c) 
= c(c-a)(2b-a-c) + b(a-b)(a+b-2c) 
= 3bc(c-a) – 3bc(a-b) 
= 3bc(b+c-2a) 
= 3bc(-a-2a) 
= -9abc 
=> Q = -9abc/(a-b)(b-c)(c-a) = 9abc /(a-b)(b-c)(a-c) 
Vậy P.Q = 9 (đpcm)

Duong Thi Nhuong
Xem chi tiết
ngonhuminh
15 tháng 2 2017 lúc 14:08

a)

đúng rồi cái này phải chứng minh: hôm trước gặp câu lớp 6 lấy kết quả luôn mới ÁC.

\(\frac{a+c}{b+c}>\frac{a}{b}\Leftrightarrow\frac{a+c}{b+c}-\frac{a}{b}>0\Leftrightarrow\frac{\left(a+c\right)b-a\left(b+c\right)}{\left(b+c\right)b}>0\Leftrightarrow\frac{bc-ac}{\left(b+c\right)b}>0\Leftrightarrow\frac{c\left(b-a\right)}{\left(b+c\right)b}>0\) (*)

Theo đầu bài ta có: \(\left\{\begin{matrix}a,b,c>0\\\frac{a}{b}< 1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(b+c\right)b>0\\a< b\Rightarrow b-a>0\end{matrix}\right.\)=> (*) đúng mọi biến đổi là tương đương => dpcm

ngonhuminh
15 tháng 2 2017 lúc 14:10

b) làm ở đâu đó rồi

lấy kết qủa câu (a) áp vào là ra

Nguyễn Lê Khánh Ly
Xem chi tiết
Võ Khắc Minh Hoàng
Xem chi tiết
Khôi 2k9
11 tháng 12 2020 lúc 21:17

a) Vì \(\frac{a}{b}>1\Rightarrow a>b\Rightarrow a-b>0\)

Xét hiệu : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+ac-ba-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)

Mà a-b>0 (cmt) suy ra :\(\frac{a}{b}-\frac{a+c}{b+c}>0\Leftrightarrow\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)

b) Chứng minh tương tự

Khách vãng lai đã xóa
Võ Khắc Minh Hoàng
11 tháng 12 2020 lúc 20:39

2/Cho b,d>0

Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Khách vãng lai đã xóa