\(\frac{a+c}{b+c}>\frac{a}{b}\)
\(\Leftrightarrow b\left(a+c\right)>a\left(b+c\right)\)
\(\Leftrightarrow ab+bc>ab+ac\)
\(\Leftrightarrow bc>ac\)
\(\Leftrightarrow b>a\)
\(\Rightarrow\frac{a}{b}< 1\) (luôn đúng)
\(\frac{a+c}{b+c}>\frac{a}{b}\)
\(\Leftrightarrow b\left(a+c\right)>a\left(b+c\right)\)
\(\Leftrightarrow ab+bc>ab+ac\)
\(\Leftrightarrow bc>ac\)
\(\Leftrightarrow b>a\)
\(\Rightarrow\frac{a}{b}< 1\) (luôn đúng)
Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) khác 1 (a,b,c,d khác 0) thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Bài 1. Cho các số nguyên a,b,c,d (a>b>c>d>0). Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì a+d > b+c
bài 1 : Cho a thuộc Z , b thuộc N* , n thuộc N* . Chứng minh rằng :
a) Nếu a < b thì \(\frac{a}{b}< \frac{a+n}{b+n}\)
b) Nếu a > b thì \(\frac{a}{b}>\frac{a+n}{b+n}\)
c) Nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}\)
bài 2 : a) Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)( b > 0,d >0) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b) Hãy viết ba số hữu tỉ xen giữa \(\frac{-1}{3}\)và \(\frac{-1}{4}\)
Chứng minh:
Cho\(b,d< 0\)Nếu\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Chứng minh rằng nếu \(\frac{a}{b}< \frac{c}{d}\left(b>0,d>0\right)\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Chứng minh rằng nếu: \(\frac{a}{b}=\frac{b}{c}\)thì \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Với b,c khác 0)
Cho số hữu tỉ \(\frac{a}{b}\)với \(a,b\in Z;b>0\).Chứng minh rằng:
1)Nếu có \(a< b\)và \(>0\)thì \(\frac{a}{b}< \frac{a+c}{b+c}\)
2)Nếu có \(a>b\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)
Chứng minh rằng nếu \(\frac{a}{b}=\frac{b}{c}\)thì \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\)với b,c khác 0
Chứng minh rằng nếu : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a = c hoặc a + b + c + d = 0