Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen minh thuy
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
7 tháng 7 2016 lúc 13:16

\(\text{Đề phải như này bạn nha : }B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)

                                             

Nguyễn Việt Hoàng
7 tháng 7 2016 lúc 13:19

N Lam theo đề Nguyễn Thiều Công Thành nha  :

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{999}-\frac{1}{1000}\)

\(\Rightarrow B=1-\frac{1}{1000}=\frac{999}{1000}\)

Dinh Tien Linh
7 tháng 7 2016 lúc 13:21

sai đề rồi bạn ơi

toàntinhtuong
Xem chi tiết
Nguyễn Anh Kim Hân
23 tháng 4 2016 lúc 14:18

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{999^2}{999.1000}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.....\frac{999.999}{999.1000}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)

\(=\frac{1}{1000}\)

Đỗ Ánh Tuyết
Xem chi tiết
Wrecking Ball
6 tháng 4 2018 lúc 16:10

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1000\cdot1001}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)

\(=1-\frac{1}{1001}\)

\(=\frac{1000}{1001}\)

Đỗ Ánh Tuyết
6 tháng 4 2018 lúc 16:10

Trả lời đi . Câu đó khó quá.

vũ thị hiền
6 tháng 4 2018 lúc 16:12

1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+.............+\(\frac{1}{1000}\)-\(\frac{1}{1001}\)=1-\(\frac{1}{1001}\)=\(\frac{1000}{1001}\)

Nguyễn Thị Thanh	Dung
Xem chi tiết
PHẠM NGUYỂN ĐÌNH ĐÌNH
Xem chi tiết
Huỳnh Phan Yến Nhi
9 tháng 1 2017 lúc 18:41

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)

\(=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+...+\frac{1000-999}{999\cdot1000}+1\)

\(=\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+...+\frac{1000}{999\cdot1000}-\frac{999}{999\cdot1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{999}{1000}+1\)

\(=\frac{1999}{1000}\)

NGUYỄN THỊ THANH MAI
Xem chi tiết
Quốc Đạt
19 tháng 2 2017 lúc 9:52

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

nguyen ngoc lan
19 tháng 2 2017 lúc 8:27

k=2

chuan 100%ok

tran ngoc huy
19 tháng 2 2017 lúc 9:36

k=2 do

cô gái 5 tuổi
Xem chi tiết
Nguyễn Phương Uyên
26 tháng 2 2019 lúc 19:25

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+\frac{2016}{998}+...+\frac{2016}{501}}{-\frac{1}{1\cdot2}-\frac{1}{3\cdot4}-\frac{1}{5\cdot6}-...-\frac{1}{999\cdot1000}}\)

\(B=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{999\cdot1000}\right)}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{500}\right)}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}\)

\(B=\frac{2016}{-1}=-2016\)

cô gái 5 tuổi
26 tháng 2 2019 lúc 19:56

cảm ơn bạn Phương Uyên

Yukki Asuna
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Hoang Hung Quan
7 tháng 2 2017 lúc 17:43

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)