Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu huu hung
Xem chi tiết
I lay my love on you
Xem chi tiết
Không Tên
13 tháng 1 2019 lúc 16:37

\(x^2+y^2=325\)

<=>  \(\left(x+y\right)^2-2xy=325\)

Đặt:  \(x+y=a;\)\(xy=b\)Khi đó ta có:

\(a-b=155\)   (1)

và  \(a^2-2b=325\)

Từ (1) ta có:   \(b=a-155\) thay vào (2) ta được:

\(a^2-2\left(a-155\right)=325\)

giải ra tìm được:  \(\orbr{\begin{cases}a=5\\a=-3\end{cases}}\)  =>  \(\orbr{\begin{cases}a=5;b=-150\\a=-3;b=-158\end{cases}}\)

TH1:  \(\hept{\begin{cases}a=5\\b=-150\end{cases}}\) ,=>  \(\hept{\begin{cases}x+y=5\\xy=-150\end{cases}}\)

\(x^2+y^2=325\) 

<=>   \(\left(x-y\right)^2+2xy=325\)

<=>  \(\left(x-y\right)^2=325-2xy=625\)

<=>  \(\left|x-y\right|=25\)

=>  \(\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=4375\)

TH2: bn tự lm tiếp nhé

Đức Hiếu Nguyễn
Xem chi tiết
Thắng Phạm
Xem chi tiết
Nguyễn Gia Bình
7 tháng 3 2016 lúc 22:28

x=15

y=-10

x3-y3=4375

Trịnh Phương Chi
Xem chi tiết
dbrby
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2018 lúc 16:25

Lớp 8 chưa sử dụng được phương pháp nghiệm pt bậc 2 đúng ko bạn? Vậy chỉ còn cách phân tích đa thức thành nhân tử thôi

\(x^2+y^2=325\Rightarrow\left(x+y\right)^2-2xy=325\) , đặt \(x+y=a\)\(xy=b\)

Từ pt đầu ta có \(a-b=155\Rightarrow b=a-155\) , thay vào pt sau:

\(a^2-2b=325\Rightarrow a^2-2\left(a-155\right)=325\Rightarrow a^2-2a-15=0\)

\(\Rightarrow\left(a-1\right)^2-16=0\Rightarrow\left(a-5\right)\left(a+3\right)=0\) \(\Rightarrow a=5;b=-150\) hoặc \(a=-3;b=-158\)

TH1: \(\left\{{}\begin{matrix}x+y=5\\x.y=-150\end{matrix}\right.\), ta biến đổi

\(x^2+y^2=325\Leftrightarrow\left(x-y\right)^2+2xy=325\Leftrightarrow\left(x-y\right)^2=325-2xy=625\)

\(\Rightarrow\left|x-y\right|=25\)

\(\Rightarrow\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=25.\left(325-150\right)=4375\)

TH2: \(x.y=-158\Rightarrow\left(x-y\right)^2=325-2xy=641\Rightarrow\left|x-y\right|=\sqrt{641}\)

\(\Rightarrow\left|x^3-y^3\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=\sqrt{641}\left(325-158\right)=167\sqrt{641}\)

trinh thi hang
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 2 2021 lúc 6:02

Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)

giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)

+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)

+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)

Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)

=> \(b\in\left\{1;2;3\right\}\)

+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)

+ Với  b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)

+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.

Khách vãng lai đã xóa
Dương Thiên Tuệ
Xem chi tiết
NTS Channel
Xem chi tiết
nguyễn ngọc huy
Xem chi tiết