Tìm GTNN, GTLN của bt: \(\frac{x^2-x+1}{x^2+x+1}\)
Tìm GTLN và GTNN của bt: p=x^2+1/x^2-x+1
cho số thực x thỏa mãn đk \(0\le x\le1\)
tìm GTNN, GTLN của bt P=\(\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)
Đặt \(x^2=p\left(0\le p\le1\right)\)
Ta có : \(P=\frac{p}{2-p}+\frac{1-p}{1+p}=-2+\frac{2}{2-p}+\frac{2}{1+p}\)
\(=-2+2\left(\frac{1}{2-p}+\frac{1}{1+p}\right)=2\left(\frac{3}{\left(2-p\right)\left(1+p\right)}-1\right)\)
\(=2\left(\frac{3}{2+p\left(1-p\right)}-1\right)\)
Do \(0\le p\le1\Rightarrow p\left(1-p\right)\ge0\) \(\Rightarrow P\le2\left(\frac{3}{2}-1\right)=1\) có MAX là 1
Ta có : \(p\left(1-p\right)\le\frac{\left(p+1-p\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge2\left(\frac{3}{2+\frac{1}{4}}-1\right)=\frac{2}{3}\)Có MIN là \(\frac{2}{3}\)
tìm GTLN hoặc GTNN của bt (x^2-4x+1)/x^2
Tìm GTLN và GTNN của bt:
A=\(\frac{2.x+1}{x^2+2}\)
B=\(\frac{2.x^2-2.x+9}{x^2+2.x+5}\)
C=\(\frac{2.\left(x^2+x+1\right)}{x^2+1}\)
tìm GTNN và GTLN của bt A=|x+1|+2|x+2|-3|x+3|
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Tìm GTLN và GTNN của bt:
\(\frac{x^2++1}{x^2-x+1}\)
Mk cần gấp cả giải chi tiết nha mn.
Đặt:
\(P=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow\left(P-1\right)x^2-x+P-1=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=1^2-4\left(P-1\right)\left(P-1\right)\ge0\)
\(\Leftrightarrow4P^2-8P+3\le0\)
\(\Leftrightarrow\frac{1}{2}\le P\le\frac{3}{2}\)
Vậy....
1) Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
1.Tìm GTNN của bt
a.x^2-2x-1
b.4x^2+4x-5
2.Tìm GTLN của bt:
a.2x-x^2-4
b.-x^2-4
BÀI 1:
\(a,x^2-2x-1\)
\(=x^2-2x+1-2\)
\(=\left(x-1\right)^2-2\)
Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy: GTNN của bt là -2 tại x=1
\(b,4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\)
Vì: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
VậyGTNN của bt là -6 tại x=-1/2
BÀI 2:
\(a,2x-x^2-4\)
\(=-x^2+2x-4\)
\(=-x^2+2x-1-3\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì: \(-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy GTLN của bt là -3 tại x=1
b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn
1)
a) Đặt \(A=x^2-2x+1\)
\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)
\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(A_{min}=2\Leftrightarrow x=1\)
Câu b tương tự
2)
a) Đặt \(B=2x-x^2-4\)
\(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy\(B_{max}=-3\Leftrightarrow x=1\)
b) Đặt \(C=-x^2-4\)
Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)
\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy \(C_{max}=-4\Leftrightarrow x=0\)
thôi bn tham khảo bài của bn kudo shinichi đi, bn ấy lm đúng rồi