Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim
Xem chi tiết
Phạm Thị Thùy Linh
3 tháng 5 2019 lúc 21:35

Xét hiệu :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

Có \(\left(a-b\right)^2\ge0\)

Mà a , b dương \(\Rightarrow\)\(ab\left(a+b\right)\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Hay \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)

Shinichi Kudo
3 tháng 5 2019 lúc 22:01

\(\frac{1}{a}\)\(\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\)\(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)

\(\Rightarrow\)b( a  + b ) + a( a + b ) \(\ge\)4ab

\(\Leftrightarrow\)ab + b2 + a2 + ab - 4ab  \(\ge\)0

\(\Leftrightarrow\)a2  -  2ab + b2 \(\ge\)

\(\Leftrightarrow\)( a - b )2 \(\ge\)0 (  luôn đúng với \(\forall\)a , b)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

tth_new
4 tháng 5 2019 lúc 10:32

Bạn tham khảo bài làm của mình tại đây: Câu hỏi của Phạm Thị Thắm Phạm - Toán lớp 8 

Binh Hang
Xem chi tiết
Thành Thái Đặng Trần
26 tháng 9 2016 lúc 21:01

a + b=1 và a,b>0
Áp dụng bất đảng thức cauchy . \(a+b\ge2\sqrt{a.b}\)  dấu = xảy ra khi a=b

Vậy \(a.b\le\frac{\left(a+b\right)2}{4}=\frac{1}{4}\)

\(\Rightarrow\) \(a.b+2\le\frac{1}{4}+2=\frac{9}{4}\)

\(\Rightarrow\)\(\frac{1}{\sqrt{ab+2}}\ge\frac{1}{\sqrt{\frac{9}{4}}}=\frac{2}{3}\)(1)

Có \(\frac{1}{a+1},\frac{1}{b+1}\)cũng là số dương nên áp dụng Cauchy có : \(\frac{1}{a+1}+\frac{1}{b+1}\ge2\frac{1}{\sqrt{\left(a+1\right)\left(b+1\right)}}=\frac{2}{\sqrt{ab+a+b+1}}=\frac{2}{\sqrt{a.b+2}}\) (2)

Từ (1) thay vào (2) có
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{a.b+2}}\ge2.\frac{2}{3}=\frac{4}{3}\left(đpcm\right)\)

Dấu = xảy ra \(\Leftrightarrow\)a = b = \(\frac{1}{2}\)
 

alibaba nguyễn
26 tháng 9 2016 lúc 21:44

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{\left(1+1\right)^2}{a+b+1+1}=\frac{4}{3}\)

Nguyễn Hữu Lâm
Xem chi tiết
Hoàng Như Quỳnh
22 tháng 6 2021 lúc 14:47

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM

Khách vãng lai đã xóa
Cao Tran Tieu Doan
Xem chi tiết
Fire Sky
8 tháng 4 2019 lúc 21:37

\(Để\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\left(đpcm\right)\)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

zZz Cool Kid_new zZz
8 tháng 4 2019 lúc 21:52

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Võ Thị Minh Trang
Xem chi tiết
Cần Cần
19 tháng 5 2017 lúc 13:25

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a}{bc}\) và \(\frac{b}{ca}\) ta có

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{abc^2}}=2.\frac{1}{c}\)

Làm tương tự ta được

\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng theo từng vế rồi chia cho 2. Ta được BĐT cần chứng minh. 

Nguyễn Anh Khoa
Xem chi tiết
Hung nguyen
14 tháng 2 2017 lúc 14:02

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow ab+b^2+ab+a^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (đúng)

\(\RightarrowĐPCM\)

không cần biết
Xem chi tiết

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
phạm ngọc nhi
Xem chi tiết
_Guiltykamikk_
8 tháng 4 2018 lúc 18:41

Ta có :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng ) ( do a;b > 0 )

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}a-b=0\\a;b>0\end{cases}}\Rightarrow a=b>0\)

Vậy ...

Lê Thị Thanh Hoa
Xem chi tiết
Tạ Duy Phương
3 tháng 12 2015 lúc 18:22

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (dúng)