\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (*)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
<=>\(\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)
<=>\(\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
<=>\(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(1)
Vì (1) luôn đúng \(\forall a,b\subsetℕ^∗\)
Nên (*) đúng
biến đổi tương đương như bạn kia hoặc Bunyakovsky dạng phân thức cũng được
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) luôn đúng
Dấu bằng xảy ra \(\Leftrightarrow\)a=b
Vậy ta có đpcm