cmr tứ tỉ lệ thức
a/b=c/d khc 1 có thể suy ra tile thức a-b/a+b=c-d/c+d
CMR từ tỉ lệ thức a/b = c/d # 1 có thể suy ra tỉ lệ thức a-b/a+b = c/d/c+d
Ai lm mik tick hết:3
Mik ghi lộn đầu bài đoạn cuối là c-d/c+d
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Suy ra: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
CMR từ tỉ lệ thức a/b = c/d (a - b # 0, c - d # 0) ta có thể suy ra tỉ lệ thức a + b / a - b = c + d / c - d
CMR tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a\ne b,c\ne d\right)\) thì ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{a+d}{c-d}\)
khó quá tui không biết làm
k tui nha
thanks
đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk; c=dk
=>\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\cdot\left(k-1\right)}{b\cdot\left(k+1\right)}=\frac{k-1}{k+1}\)
=>
đcm. sai đề. GÀ
CMR từ tỉ lệ thức a /b = c /d ( a-b \(\ne\) 0 và c-d \(\ne\) 0 ) ta có thể suy ra tỉ lệ thức:
(a+b) /(a-b) = (c+d) /(c-d)
chứng minh rằng từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh. từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức a+b/b=c+d/d
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
(Mik nghĩ zậy thui chứ ko chắc có trình bày đúng hay ko)
_Hok tốt_
!!!
Giúp mình với:
Chứng minh: Từ tỉ lệ thức a/b=c/d khác 1 ta có thể suy ra tỉ lệ thức (a-b)/(a+b)=(c-d)/(c+d)
Theo bai ra ta co
a/b=c/d
=> a/c=b/d=a+b/c+d=a-b/c-d
=> a-b/a+b = c-d/c+d
Lik-e ung ho nhe dung tiec lik-e hom nay
chứng minh rằng từ tỉ lệ thức a/b=c/d ( a-b khác 0, c - d khác 0) ta có thể suy ra tỉ lệ thức a+b/c-b+c+d/c-d
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức a+b/a-b = c + d/c-d
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5