Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
piojoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 16:01

(2x-y+7)^2022>=0 với mọi x,y

|x-3|^2023>=0 với mọi x,y

Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y

mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)

=>2x-y+7=0 và x-3=0

=>x=3 và y=2x+7=2*3+7=13

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
17 tháng 8 2023 lúc 13:29

\(x^2-25=y\left(y+6\right)\)

\(\Leftrightarrow x^2-25=y^2+6y\)

\(\Leftrightarrow x^2-25-y^2-6y=0\)

\(\Leftrightarrow x^2-\left(y^2+6y+9\right)-16=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16\)

\(\Leftrightarrow\left(x+y+3\right);\left(x-y-3\right)\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)

Ta giải các hệ phương trình sau :

1) \(\left\{{}\begin{matrix}x+y+3=-1\\x-y-3=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-4\\x-y=-15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-11\left(loại\right)\\x-y=-15\end{matrix}\right.\)

2) \(\left\{{}\begin{matrix}x+y+3=1\\x-y-3=16\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\x-y=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=17\left(loại\right)\\x-y=19\end{matrix}\right.\)

3) \(\left\{{}\begin{matrix}x+y+3=2\\x-y-3=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-6\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}x+y+3=-2\\x-y-3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-5\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}x+y+3=-4\\x-y-3=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-7\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\x-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}x+y+3=4\\x-y-3=4\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x-y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+y+3=-8\\x-y-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-11\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-10\\x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-6\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}x+y+3=8\\x-y-3=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=0\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}x+y+3=-16\\x-y-3=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-19\\x-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-17\left(loại\right)\\x-y=2\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x+y+3=16\\x-y-3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=15\\x-y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=19\left(loại\right)\\x-y=4\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(5;-6\right);\left(-5;0\right);\left(-3;-2\right);\left(4;-3\right);\left(-5;-6\right);\left(5;0\right)\right\}\)

Khiêm Nguyễn Gia
Xem chi tiết
????
18 tháng 8 2023 lúc 12:18

=2

 

lequangtuan
18 tháng 8 2023 lúc 14:12

=2

Lê Song Phương
18 tháng 8 2023 lúc 14:43

\(2^x=5^y-624\)

\(\Leftrightarrow5^y=2^x+624\)

Nếu \(x\ge1,y\ge1\) thì vô lý do VT là số lẻ mà VP là số chẵn.

Nếu \(x=0\Rightarrow5^y=625\Rightarrow y=4\)

Nếu \(y=0\Rightarrow2^x=-623\), vô lý.

Vậy cặp số \(\left(x;y\right)=\left(0;4\right)\) là cặp số duy nhất thỏa mãn ycbt.

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 18:18

\(3x^2+3xy-17=7x-2y\)

\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)

\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)

\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)

\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)

\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)

😈tử thần😈
Xem chi tiết
Hoàng Anh Thắng
18 tháng 9 2021 lúc 18:21

Ta có \(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow y\left(x-1\right)-x^2=2\)

\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)

Vì x,y nguyên nên ta có bảng

x-1   3  1    -1   -3
y-x-1   1   3    -3    -1
x   4  2     0    -2
y   6  8    2   4

Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn

 

Lấp La Lấp Lánh
18 tháng 9 2021 lúc 18:22

\(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow x^2-xy+y+2=0\)

\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)

 

Linh_Chi_chimte
Xem chi tiết

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

Khiêm Nguyễn Gia
Xem chi tiết
THONG DO TRONG
18 tháng 8 2023 lúc 15:43

khong biet

Trương Quang Bảo
Xem chi tiết
Trần Quốc Đạt
23 tháng 12 2016 lúc 20:34

Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).

Xét \(x\ne0\). Khi đó  \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.

(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).

Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).

Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4

(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)

Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.

Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).

Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).

Trường hợp 2 ngược lại.

Tới đây bạn tự giải được nha.

kagamine rin len
23 tháng 12 2016 lúc 12:38

\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)

\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)

\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)

\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)

\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)

đến đây tự làm tiếp nhé

Phạm Thị Thu Ngân
6 tháng 3 2018 lúc 20:20

Có:

                                                      (1)

, nên từ  và  chẵn.

Giả sử   lẻ và  

 là số chính phương,  nên  cũng là hai số chính phương.

Do  

Khi , có .

Vậy có hai cặp số nguyên thỏa mãn yêu cầu bài toán là:

Nguyễn Hưng Thuận
Xem chi tiết
ST
19 tháng 1 2018 lúc 20:28

Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)

Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)

Vậy các cặp (x;y) là (2;10);(-2;-10)

Nguyễn Hưng Thuận
19 tháng 1 2018 lúc 20:29

cảm ơn

Lê Thành An
Xem chi tiết
Hoàng Nguyễn Văn
3 tháng 1 2020 lúc 23:35

Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)

Vì x,y nguyên dương nên

\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:

\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)

Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)

mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)

*x=1 thay vào (1) ta có:

\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)

mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)

*y=2 thay vào (1) ta được: 

\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)

Sau đó cm pt trên không có nghiệm nguyên dương.

Vậy x=1;y=3

Khách vãng lai đã xóa