Chứng minh rằng với mọi số nguyên m thì 4m^3+9m^2-19m-30 chia hết cho 6
Nhanh lên mai mình nộp rùi
CMR với mọi số nguyên m thì \(4m^3+9m^2-19m-30\)chia hết cho 6
a) CMR với mọi số nguyên m thì 4m3 + 9m2 - 19m - 30 chia hết cho 6.
b) CMR n3 + 3n2 - n - 3 chia hết cho 48 với mọi n là số nguyên lẻ.
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
Chứng minh rằng 5^n+1 +3^n+2-3^n-5^n chia hết cho 24 với mọi số nguyên dương n.
Bạn nào giúp mình với sáng mai mình học rùi. huhu
chung minh rang voi moi so nguyen m thi 4m^3 + 9m^2 - 19m - 30 chia het cho 6
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
\(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.\(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).\(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
Cho m là số nguyên.Chứng minh 4m^3+9m^2-19m-30 chia hết cho 6
Mình giải được đến đâ rôi sao nữa vậy?
4m^3+9m^2-19m-30=4m^3+4m^2-24m+5m^2+5m^2-30
=4m(m^2+m-6)+5(m^2+m-6)
=(4m+5)(m^2+3m-2m-6)
=(4m+5)(m^2-2m+3m-6)
=(4m+5)(m(m-2)+3(m-2))
=(4m+5)(m+3)(m-2)
Nếu m có dạng 3k thì m+3 chia hết cho 3, nếu m có dạng 3k-1 thì m-2 chia hết cho 3
Chứng minh rằng với mọi số nguyên dương n thì n5-n chia hết cho 5
giúp mk với mai nộp rồi
\(n^5-n\)
\(=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n^2-1\right)\)
Ta có số hạng đầu tiên là tích 5 số nguyên liên tiếp nên chia hểt cho 5, số hạng thứ 2 chia hết cho 5
Vậy \(n^5-n⋮5\)
Chứng tỏ rằng nếu a và b chia cho m có cùng số dư thì hiệu a-b chia hết cho m .
AI giúp mình với mình sẽ like cho ,huhuhu mai là phải nộp rùi !
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM
Cho x,y là số tự nhiên. Chứng minh rằng nếu x + 2y chia hết cho 5 thì 3x - 4y chia hết cho 5.
giúp mình cang nhanh àng tốt nha mọi người!! Sáng mai mình phải nộp bài rồi !
Chứng tỏ rằng nếu 2 số ko chia hết cho 3 và khi chia cho 3 có số dư khác nhau thì tổng của chúng chia hết cho 3.Làm giúp mình với mai mình nộp rùi.Nhanh hộ mình nha!