cmr \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+......+\frac{1}{100^2}< \frac{1}{4}\)
CMR : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...\frac{1}{100^2}\)
Ta có :
\(A< \frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{99\times100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Ta có :
\(A>\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{100\times101}\)
\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{100}>\frac{1}{6}\)
Vậy \(\frac{1}{6}< A< \frac{1}{4}\left(đpcm\right)\)
CMR : \(\frac{1}{6}
Dat A=1/5^2+1/6^2+1/7^2+............1/100^2<1/4.5+1/5.6+1/6.7+....+1/99.10=
1/4-1/5+1/5-1/6+1/6-1/7+.............1/99-1/100=
14-1/100=25/100-1/100=24/25/100=1/4(1)
A>1/5.6+1/6.7+1/7.8+....+1/100.101=
1/5-1/6+1/6-1/7+1/7-1/8 +...+1/100-1/101=
1/5-1/101>6 (2)
Tu 1 va 2 => dieu can chung minh
CMR: \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)
Suy ra: điều cần chứng minh
đặt 1/5^2+1/6^2+,,,+1/100^2=A
*chứng minh A<1/4
ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)
\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)
*chứng minh A>1/6
ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)
từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)
tick nhé
CMR:\(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.....+\frac{1}{100^2}<\frac{1}{4}\)
đặt \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=A\)
*chứng minh A<1/4
ta có:\(A<\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\) *chứng minh A>1/6
ta có:
\(A>\frac{1}{5.6}+\frac{1}{6.7}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
từ 2 điều trên =>đpcm
mk chắc chắn đúng,hồi chiều cô mk ms cho làm
CMR:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\)\(\frac{1}{100^2}< \frac{1}{4}\)
Ta có\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}\)(A là đề bài)
Mà \(\frac{1}{5}-\frac{1}{30}=\frac{1}{6}< \frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\frac{1}{6}< A< \frac{1}{4}\left(ĐPCM\right)\)
Ta có: \(\frac{1}{5\cdot6}< \frac{1}{5^2}=\frac{1}{5\cdot5}< \frac{1}{4\cdot5}\)
\(\frac{1}{6\cdot7}< \frac{1}{6^2}=\frac{1}{6\cdot6}< \frac{1}{5\cdot6}\)
\(\frac{1}{7\cdot8}< \frac{1}{7^2}=\frac{1}{7\cdot7}< \frac{1}{6\cdot7}\)
.............................
\(\frac{1}{100\cdot101}< \frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
Đặt \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(=>\frac{1}{6}< A< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< B< \frac{1}{4}\)
\(=>\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(Đpcm\right)\)
CMR:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\)<\(\frac{1}{4}\)
Ta có:\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(1\right)\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(2\right)\)
Từ (1) và (2) ta được \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(đpcm\right)\)
giúp mk với các bn . CMR \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}< \frac{1}{4}\)
Ta có:
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
.......
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\) \(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\) = \(\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\) \(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{6}\) (1)
Tương tự ta có:
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
......
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\) \(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\) (đpcm)
_Chúc_bạn_học_tốt_
cmr A=\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
ta có: \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)( đ p cm)
Chúc bn học tốt !!!
Cho A=\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
CMR \(\frac{1}{6}< A< \frac{1}{4}\)