Chứng minh phân số sau là phân số tối giản với mọi giá trị nguyên n:
8n + 5
6 n + 4
chứng minh phân số sau tối giản với mọi số nguyên n
\(\frac{15n^2+8n+6}{30n^2+21n+13}\)
chứng minh phân số sau tối giản với mọi số nguyên n
\(\frac{15n^2+8n+6}{30n^2+21n+13}\)
chứng minh rằng phân số sau tối giản với mọi số nguyên n
\(\frac{15n^2+8n+6}{30n^2+21n+13}\)
a) \(\frac{15n^2+8n+6}{30n^2+21+13}\)
Gọi d là ước chung lớn nhất của \(15n^2+8n+6\) và \(30n^2+21+13\)
⇒ \(15n^2+8n+6⋮d\) ;\(30n^2+21+13⋮d\)
Ta có:
\(15n^2+8n+6⋮d\)
⇒ \(30n^2+16n+12⋮d\)
Mà \(30n^2+21n+13⋮d\)
⇒ \(5n+1⋮d\) (1)
⇒ \(3n\left(5n+1\right)\text{ =}15n^2+3n⋮d\)
⇒ \(15n^2+8n+6-15n^2-3n=5n+6⋮d\)(2)
Từ (1) và (2), ta có:
\(5⋮d\)
mà \(5n+6=5\left(n+1\right)+1⋮d\)
Nên 1 ⋮ d
⇒ ĐPCM.
cho A = n+5/n+4. a) tìm n thuộc Z để A thuộc Z. b) Chứng minh rằng A là phân số tối giản với mọi giá trị của số nguyên n thỏa mãn n khác 4
a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 4 | 1 | -1 |
n | -3 | -5 |
b, đk n khác 4
Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\))
n + 5 - n - 4 = 1 => d = 1
Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4
chứng minh rằng với mọi số tự nhiên n thì 2n+1/8n+6 là phân số tối giản
A = \(\dfrac{2n+1}{8n+6}\) (n \(\ne\) - \(\dfrac{3}{4}\))
Gọi ước chung lớn nhất của 2n + 1 và 8n + 6 là d
Ta có : \(\left\{{}\begin{matrix}2n+1⋮d\\8n+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}8n+4⋮d\\8n+6⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được: 8n + 6 - 8n - 4 ⋮ d ⇒ 2 \(⋮\) d ⇒ d = { 1; 2}
Nếu d = 2 ta có: 2n + 1 ⋮ 2 ⇒ 1 ⋮ 2 ( vô lý)
Vậy d = 1 nên ước chung lớn nhất của 2n + 1 và 8n + 6 là 1
Hay phân số: \(\dfrac{2n+1}{8n+6}\) là phân số tối giản điều phải chứng minh
Chứng tỏ rằng với mọi giá trị n là số nguyên thì phân số (3n+10):(n+3) là phân số tối giản. Tìm giá trị nguyên n để phân số đó cs giá trị nguyên (héppp mii mình vộiii)
Gọi d=ƯCLN(3n+10;n+3)
=>3n+10-3n-9 chiahết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Chứng minh phân số sau tối giản với mọi số nguyên khác 0:
\(\frac{8n+5}{6n+4}\)
Gọi \(d\inƯCLN\left(8n+5;6n+4\right)\)
\(\Rightarrow8n+5⋮d;6n+4⋮d\)
\(\Rightarrow3\left(8n+5\right)⋮d;4\left(6n+4\right)⋮d\)
\(\Rightarrow24n+15⋮d;24n+16⋮d\)
\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{8n+5}{6n+4}\) tối giản (đpcm)
Chứng minh phân số sau là phân số tối giản với mọi giá trị nguyên n:
3n - 2
4n - 3
Gọi d là ƯCLN (3n - 2; 4n - 3) . Nên ta có :
3n - 2 ⋮ d và 4n - 3 ⋮ d
<=> 4(3n - 2) ⋮ d và 3(4n - 3) ⋮ d
<=> 12n - 8 ⋮ d 12n - 9 ⋮ d
=> (12n - 8) - ( 12n - 9) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (3n - 2; 4n - 3) = 1 => \(\frac{3n-2}{4n-3}\) tối giản ( đpcm )
1. Chứng minh các phân số sau là phân số tối giản với mọi số nguyên n : A=12n+1/30n+2
2. Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất : C =5/x-2
Giúp nhoa mọi người