tìm hai số hữu tỉ x và y(y khác 0) sao cho x+y=x.y=x:y
Tìm hai số hữu tỉ x và y sao cho x+y=x.y=x:y với y khác 0
xy=x:y
\(\Rightarrow y^2=x:x=1\)
\(\Rightarrow y=1\) hoặc \(y=-1\)
\(y=1\Rightarrow x+1=x\)( vô lí)
\(y=-1\Rightarrow x-1=-x\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\), \(y=-1\)
tíc mình nha
\(x+y=x.y=\frac{x}{y}\)(1)
Nhân 3 vế với y
\(y\left(x+y\right)=x.y^2=x\)
Vậy:
\(x.y^2=x\)
Chia hai vế cho x:
\(y^2=1\Rightarrow y=1\)(2)
Thế (2) vào (1)
\(x+1=x.1=\frac{x}{1}\)
\(\Leftrightarrow x+1=x=x\)
\(\Leftrightarrow x-x=-1\Leftrightarrow0=\left(-1\right)\text{(Vô lý)}\)
Vậy không thể tìm được x và y
Tìm 2 số hữu tỉ x và y sao cho : x-y=x.y=x:y(y khác 0)
xy=x:y
=>y.y=x:x
=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x(vô lí)
*)y=-1
=>x-1=-x
<=>2x=1
<=->x=1/2
Vậy y=-1 x=1/2
Tìm số hữu tỉ x, y (y khác 0) sao cho: x+y=x.y=x:y
Ta có \(xy=x:y\)
\(=>y^2=x:x=1\)
\(=>y=1\)hoặc \(y=-1\)
*) \(y=1=>x+1=x\)(vô lí)
*) \(y=-1=>x-1=-x\)
\(=>x=\frac{1}{2}\)
Vậy với y=-1 thì \(x=\frac{1}{2}\)
Chúc bạn học tốt !!!
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = 1212
thay vào thấy thỏa mãn
Vậy x = 1212 và y = -1
tìm hai số hữu tỉ x và y sao cho x-y=x.y=x:y(y#0)
x-y=x.y
=>x=x.y+y=y.(x+1)
=>x/y=x+1 (1)
Mà x-y=x/y (gt)
=>x-y=x+1
=>-y=1
=>y=-1
Thay y=-1 vào x-y=x.y
=>x-(-1)=x.(-1)
=>x+1=-x
=>2x=-1=>x=-1/2
Vậy x=-1/2;y=-1
tìm hai số hữu tỉ x và y sao cho x- y = x.y= x:y (y#0)
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
Ta có : x - y = xy => x = xy + y = y (x+1)
=> x : y = x + 1 ( Vì y khác 0)
Ta có : x : y = x - y => x + 1 = x - y => x - (-1) = x- y => y = -1
Thay y = -1 vào x - y = xy => x + 1 = x.(-1)
=> x + 1 = -x => -x - x = 1 => -2x = 1
=> x = -1/2
Vậy y = -1 và x = -1/2
Tìm 2 số hữu tỉ x, y sao cho x-y = x.y = x:y (y khác 0)
vi x- y = x:y =>(x-y)y = x => x = xy - y2
mà xy = x-y => x = x - y - y2
=>y2 = -y =>(-y)2 = -y (chia hai ve cho -y)=> y= -1
ta co : x-y = xy , thay y = -1 vao :
x-(-1)= - x
=>x+1 = -x
=> 2x= -1
=> x=-1/2
Vay hai so x, y thoa man la : x= -1/2 ; y= -1
Theo đề bài :
Dễ thấy rằng :
\(y\ne0\) (để cho x : y là số xác định)
Hơn nữa , \(x\ne0\) vì nếu x = 0 thì \(x\cdot y=x\div y=0\) nhưng \(x\div y\ne0\) (vì\(y\ne0\) )
Vì \(x\cdot y=x\div y\)
\(\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
\(\hept{\begin{cases}y=1\Rightarrow x-1=x\cdot1\left(Lo\text{ại}\right)\\y=-1\Rightarrow x+1=-x\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\left(Nh\text{ận}\right)\end{cases}}\)
Vậy \(x=-\frac{1}{2};y=-1\)
Tìm 2 số hữu tỉ x và y sao cho x-y=x.y=x:y (y khác 0)
Giải đúng mình tick cho
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
TÍch nha
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
x.y = x: y => y = 1 hoặc ‐1 ﴾câu a﴿
x‐y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ nếu y = 1 thì 1/x = 1‐1 = 0 => Không tìm được x
+ nếu y = ‐1 thì 1/x = ‐1 ‐ 1 = ‐2 => x=‐1/2
vậy x=‐1/2 và y=‐1
Tìm 2 số hữu tỉ x,y sao cho x+y =x.y = x:y (y khác 0)
xy=x:y
=>y.y=x:x
=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x(vô lí)
*)y=-1
=>x-1=-x
<=>2x=1
<=->x=1/2
Vậy y=-1 x=1/2
mìh ko tih ra nên copy luôn san de to biet cah giai luon
Từ xy=x:y
=>y2=x/x=1
<=>y=1 hoặc y=-1
*)y=1
=>x+1=x
<=>x-x=1
<=>0=1(vô lí)
*)y=-1
=>x-1=-x
<=>2x=1
<=>x=1/2
Vậy x=1/2 y=-1
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1