Tìm x,y nguyên thỏa mãn: 3xy+y=4-x
tìm x,y nguyên thỏa mãn : 3xy + y = 4 - x
\(y\left(3x+1\right)=4-x\)
\(3y\left(3x+1\right)=12-3x\)
\(3y\left(3x+1\right)=-\left(3x+1\right)+13\)
\(\left(3x+1\right)\left(3y+1\right)=13\)
Đến đây tự giải nhá.
Tìm x,y nguyên thỏa mãn : 3xy + y=4-x
3xy + y=4-x
<=>9xy+3y=12-3x
<=>9xy+3y+3x+1=13
<=>3y.(3x+1)+(3x+1)=13
<=>(3x+1)(3y+1)=13
<=> *\(\begin{cases}3x+1=1\\3y+1=13\end{cases}\)<=>\(\begin{cases}x=0\\y=4\end{cases}\)(nhận)
*\(\begin{cases}3x+1=12\\3y+1=1\end{cases}\)<=>\(\begin{cases}x=4\\y=0\end{cases}\)(nhận)
*\(\begin{cases}3x+1=-1\\3y+1=-13\end{cases}\)<=>\(\begin{cases}x=-\frac{2}{3}\\y=-\frac{14}{3}\end{cases}\)(loại)
*\(\begin{cases}3x+1=-13\\3y+1=-1\end{cases}\)<=>\(\begin{cases}x=-\frac{14}{3}\\y=-\frac{2}{3}\end{cases}\)(loại)
Vậy x=4 thì y=0 ; x=0 thì y=4
Tìm x,y nguyên thỏa mãn 3xy - 5 = x^2 +2y
Tham khảo tại đây nhé: Tìm x, y nguyên thoả 3xy-5=x^2+2y - Tay Thu (hoc247.net)
Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn: x²-3xy+p²y² =12p.
Vì 12p ⋮ 3 nên x²-3xy+p²y² ⋮ 3 mà -3xy ⋮ 3 nên x²+p²y² ⋮ 3 kết hợp với tính chất 1 số chính phương chỉ chia 3 dư 0 hoặc 1 nên nếu tổng 2 chính phương ⋮ 3 thì cả 2 số⋮ 3. Từ đó x² và p²y² mà đây là 2 bình phương và 3 là số nguyên tố nên x² và p²y² ⋮ 9. Vì x2⋮ 9 nên x ⋮ 3 từ đó 3xy ⋮cho 9. Qua đó x²-3xy+p²y² ⋮ 9. Ta có 12p= 4.3p mà (4,9)=1 nên 3p ⋮ 9 từ đó p ⋮ 3 mà p là số nguyên tố nên p = 3.
=> x²-3xy+p²y² =12p <=> x²-3xy+9y² =36 áp dụng bất đẳng thức Cô si x2+y2 ≥ 2xy với mọi x,y => x²+9y²≥2.x.3y=6xy => 36≥6xy-3xy=3xy =>12≥xy mà x,y là số nguyên dương nên x.y ≥1 nên 12≥xy≥x.1=x
Ta có x²+(-3xy)+9y² chẵn mà đây là tổng 3 số nguyên nên tồn tại 1 số chẵn
nếu x chẵn => x²+(-3xy) chẵn => 9y² chẵn mà (9,2)=1 nên y chẵn ta cmtt với y. Từ đó suy ra cả x và y đều chẵn, kết hợp với 12≥x,x⋮3 và x nguyên dương => x∈{6,12} thay x vào x²-3xy+9y² =36 ta tìm được các cặp (x,y) là (6,0);(6,2);(12,6)
Vậy các cặp (x,y,p) cần tìm là (6,0,3);(6,2,3);(12,6,3)
Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn:
x²-3xy+p²y² =12p.
tìm tất cả các cặp số nguyên(x,y) thỏa mãn x ^ 2 - 3xy + 2 = y
\(x^2-3xy+2=y\)
\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)
\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)
Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)
\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)
Lập bảng:
3x+1 | 19 | 1 | -19 | -1 |
x | 6 | 0 | \(\dfrac{-20}{3}\left(l\right)\) | \(\dfrac{-2}{3}\left(l\right)\) |
Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)
Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)
Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)
a) cho x,y thỏa mãn 8x^2+y^2+1/4x^2=4
tìm x,y để xy đạt GTNN, GTLN.
b) tìm x,y nguyên 3xy+x+y=17
Tìm tất cả các cặp số nguyên ( x;y ) thỏa mãn : 3xy - x + y = 1
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)