Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngochan123
Xem chi tiết
Nhật Hạ
17 tháng 2 2020 lúc 20:23

a, Ta có: OA + AB = OB

và OC + CD = OD

Mà OA = OC (gt) ; AB = CD (gt)

=> OB = OD 

=> △OBD cân tại O

b, Vì ON là tia phân giác của xOy => xON = NOy = xOy : 2 = 65o : 2 = 32,5o

Cách 1: Xét △OAM và △OCM 

Có: OA = OC (gt)

    AOM = COM (cmt)

   OM là cạnh chung

=> △OAM = △OCM (c.g.c)

=> AMO = CMO (2 góc tương ứng)

Mà AMO + CMO = 180o (2 góc kề bù)

=> AMO = CMO = 180o : 2 = 90o

Xét △BON và △DON

Có: OB = OD (cmt)

    BON = DON (cmt)

   ON là cạnh chung

=> △BON = △DON (c.g.c)

=> BNO = DNO (2 góc tương ứng)

Mà BNO + DNO = 180o (2 góc kề bù)

=> BNO = DNO = 180o : 2 = 90o     

Cách 2: Vì OA = OC (gt) => △AOC cân tại O => CAO = (180o - AOC) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △OAM có: MAO + AMO + MOA = 180o (tổng 3 góc trong tam giác)

=> 57,5o + AMO + 32,5o = 180o 

=> AMO = 180o - 32,5o - 57,5o 

=> AMO = 90o 

Vì △OBD cân tại O => DBO = (180o - BOD) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △BON có: NBO + BNO + BON = 180o (tổng 3 góc trong tam giác)

=> 57,5o + BNO + 32,5o = 180o 

=> BNO = 180o - 32,5o - 57,5o 

=> BNO = 90o 

c, Vì AMO = 90o => AM ⊥ ON hay AC ⊥ ON (M \in  AC)   (1)

Vì BNO = 90o => BN ⊥ ON hay BD ⊥ ON (N \in  BD)       (2)

=> Từ (1) và (2) => AC // BD (dhnb)

Khách vãng lai đã xóa
Luka Vũ
Xem chi tiết
Edogawa Conan
21 tháng 1 2021 lúc 17:26

x y O A C B D

a,Ta có:OC=OA;AB=CD

=>OC+CD=OA+AB

=>OD=OB =>\(\Delta OBD\)cân tại O

b,Vì \(\Delta OBD\)cân tại O

=> \(\widehat{OBD}=\frac{180^o-60^o}{2}=60^o\)

c,Do OA=OC => \(\Delta OAC\)cân tại O

                      => \(\widehat{OAC}=\frac{180^o-60^o}{2}=60^o\)

                      =>\(\widehat{OBD}=\widehat{OAC}\)

                      => AC//CD(do\(\widehat{OBD}\)\(\widehat{OAC}\) ở vị rí đồng vị)

Khách vãng lai đã xóa
Thảo Phạm
Xem chi tiết
Quốc Ân Bùi
Xem chi tiết
Minh Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 23:54

a: Xét ΔOBD có OB=OD

nên ΔOBD cân tại O

b: Ta có: ΔOAC cân tại O

mà OM là đường phân giác

nên OM là đường cao

Ta có: ΔOBD cân tại O

mà ON là đường phân giác

nên ON là đường cao

c: Xét ΔOBD có OA/AB=OC/CD

nên AC//BD

Lê Hạnh Nguyên
Xem chi tiết
Đỗ Ngọc Hải
31 tháng 5 2018 lúc 15:34

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

Huy Hoàng
31 tháng 5 2018 lúc 22:31

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

lê thị thu hiền
16 tháng 7 2018 lúc 14:42

gggggggggggggggggggggggggggggg

Liễu Lê thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 21:11

1: Xét ΔOMA và ΔOMB có 

OM chung

MA=MB

OA=OB

Do đó: ΔOMA=ΔOMB

Cao thái đăng
Xem chi tiết
Nhật Hạ
26 tháng 2 2020 lúc 19:42

a, Xét △OBD vuông tại D và △OAC vuông tại C

Có: xOy là cạnh chung

      OB = OA (gt)

=> △OBD = △OAC (ch-gn)

b, Vì △OBD = △OAC (cmt) => OD = OC (2 cạnh tương ứng) và OBD = OAC (2 góc tương ứng)

Ta có: OD + AD = OA và OC + CB = OB

Mà OA = OB (gt) ; OD = OC (cmt)

=> AD =BC

Xét △CIB vuông tại C và △DIA vuông tại D

Có: BC = AD (cmt)

      CBI = DAI (2 góc tương ứng)

=> △CIB = △DIA (cgv-gnk)

=> IC = ID (2 cạnh tương ứng)

c, Xét △AOI và △BOI

Có: OA = OB (gt)

      OI là cạnh chung

       IA = IB (△DIA = △CIB)

=> △AOI = △BOI (c.c.c)

=> AOI = BOI (2 góc tương ứng)

=> OI là tia phân giác của góc AOB

hay OI là tia phân giác của góc xOy

Khách vãng lai đã xóa
ánh tuyết
Xem chi tiết