CMR : Với mọi \(n\in Z\)thì \(n^2+n+2\)không chia hết cho 3
CMR với mọi n thuộc Z thì:
a. (n-1)*(n+2)+12 không chia hết cho 9
b. (n+2)*(n+9)+21 không chia hết ch 49
CMR :Với mọi n thuôc Z thì:
a) (2n+1)(2n-1) không chia hết cho 2
b) n(n-1) +1khoong chia hết cho 2
c) (n-1)(n+2+1) chia hết cho 9
a)thiếu đề
b)n(n-1)+1
*)Nếu n=2k(kEZ)
thì n(n-1)+1=2k(2k-1)+1=4k2-2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)
*)Nếu n=2k+1(kEZ)
thì n(n-1)+1=(2k+1)(2k+1-1)+1=(2k+1)(2k)+1=4k2+2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)
Vậy với mọi nEZ thì n(n-1)+1 đều không chia hết cho 2
c)Nếu n=3k(kEZ)
thì (n-1)(n+2+1)=(3k-1)(3k+2+1)=(3k-1)(3k+3)=3k(3k+3)-(3k+3)=9k2-3k-3(chia hết cho 3)
cái này bạn xét tương tự, xét 3k;3k+1;3k+2
Cmr với mọi n thuộc Z thì n^4+5n^2+9 không chia hết cho121
Bài 1 :CMR: số có dạng 9n+1 không chia hết cho 4 với mọi số nguyên n
Bài 2:CMR : tích 2 số chẵn chi hết cho 8
Bài 3: CMR: n3-3n2-n+3 chia hết cho 48 với n lẻ
Bài 4: CMR: n5-5n3+4n chia hết cho 120 với mọi n c Z
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
CMR: với mọi n không chia hết cho 3 thì n^2 chia 3 dư 1
Ta có:
Vì n không chia hết cho 3 nên: n=(a.3+1) hoặc (a.3+2)
Nếu n=(a.3+1) thì:(a.3+1)2=a.3.a.3+a.3+a.3+1 Vì (a.3.a.3+a.3+a.3)đều chia hết cho 3 nhưng 1:3(dư 1)
Suy ra (a.3+1)2:3(dư 1)
Nếu n=(a.3+2) thì:(a.3+2)2=a.3.a.3+a.3.2+2.a.3+2.2 Vì (a.3.a.3+a.2.3+2.a.3)đều chia hết cho 3 nhưng (2.2):3(dư 1)
Suy ra (a.3+2)2:3(dư 1)
Vậy ĐCCM
cmr vơi mọi n thuộc z thì
1,B=n^3-7n+19 không chia hết cho 6
2, Tổng bình phương của 2 số lẻ không chia hết cho 4
3,hiệu bình phương của hai số lẻ chia hết cho 8
4, n(n+2)(25n^2-1) chia hết cho 24
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
CMR với mọi n E Z thì:
a) n(n+5) - (n-3)(n+2) chia hết cho 6
b) (n-1)(n+1)-(n-7)(n-5) chia hết cho 12
a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6
= 6n - 6 = 6(n - 1) chia hết cho 6
b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35
= 12n - 36 = 12(n - 3) chia hết cho 12
a) n(n+5) - (n-3).(n+2)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6.(n+1)
Vậy n(n+5) - (n-3).(n+2) chia hết cho 6.
b) (n-1).(n+1) - (n-7).(n-5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= 12n - 36
= 12.(n-3)
Vậy (n-1).(n+1) - (n-7).(n-5) chia hết cho 12
CMR với mọi n E Z thì:
a) n(n+5) - (n-3)(n+2) chia hết cho 6
b) (n-1)(n+1)-(n-7)(n-5) chia hết cho 12
a, n(n+5) - (n-3)(n+2)
= n2 + 5n - (n2 + 2n - 3n - 6)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n + 1) chia hết cho 6 (Đpcm)
b, (n-1)(n+1) - (n-7)(n-5)
= n2 + n - n - 1 - (n2 - 5n - 7n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36
= 12(n - 3) chia hết cho 12 (Đpcm)
a) n(n+5)-(n-3)(n+2)
=n^2+5n-(n^2+2n-3n+6)
=n^2+5n-n^2-2n+3n-6
=6n-6
=6(n-1) chia het cho 6 voi moi n thuoc z
b) (n-1)(n+1)-(n-7)(n-5)
=n^2+n-n-1-(n^2-5n-7n+35)
=n^2-1-n^2+12n-35
=12n-36
=12(n-3) chia het cho 12 voi moi n thuoc z