Tìm các số x,y thuộc N*.Sao cho x4+4y là số nguyên tố
Tìm số nguyên tố x,y thuộc N* sao cho x4 + 4y4 là số nguyên tố
x^4 + 4y^4 = x^4 + 4.x^2.y^2 + 4y^4 - 4.x^2.y^2
= (x^2 + 2y^2)^2 - (2xy)^2
= (x^2 + 2y^2 - 2xy)(x^2 + 2y^2 + 2xy)
Mà x,y thuộc số tự nhiên nên x^2 + 2y^2 - 2xy < x^2 + 2y^2 + 2xy
Mặt khác x^4 + 4y^4 là số nguyên tố nên => x^2 + 2y^2 - 2xy =1
<=> (x-y)^2 + y^2 = 1
=> x-y = 1 và y = 0 => x= 1, y = 0 (loại)
hoặc x-y = 0 và y = 1 => x=y=1
Vậy x=y=1
Cảm ơn các bạn nha
Câu 2:
1)Tìm số nguyên tố P sao cho các số P+2 và P+10 là số nguyên tố
2)Tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x-4y= -21
3)Cho phân số :A=n-5/n+1 (n thuộc Z;n khác -1)
a)Tìm n để A là số nguyên.
b)Tìm n để A tối giản.
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
1. Tìm các giá trị nguyên dương nhỏ hơn 10 của x,y sao cho: 3x - 4y = -21
2. Tìm số nguyên tố P sao cho P+2 và P+4 cũng là các số nguyên tố.
1)Rút gọn: A=7.9+14.27-21.36/21.27+42.81+63.108
2)a)tìm phân số P sao cho các số P+2 và P+10 là số nguyên tố
b)tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x-4y=-21
c)cho phân số: A =n-5/n+1 (n thuộc Z; N#-1)
-tìm n để A nguyên
-tìm n để A tối giản
Tìm các số tự nhiên x y sao cho x^4 + 4y^4 la số nguyên tố
Tìm các số nguyên m và n sao cho
P(x)=x4+mx3+29x2+nx+4 là số chính phương (x thuộc Z)
1. Tìm các giá trị nguyên dương nhỏ hơn 10 của x,y sao cho: 3x - 4y= -21
2. Tìm số nguyên tố P sao cho P+2 và P+4 cùng là số nguyên tố.
( Tớ cần gấp lắm, giúp tớ điiiii có gì tớ làm được tớ hậu tạ ^^~)
1. x=(4y-21)/3=y-7+(y/3) . Đặt y/3=t thì y=3t . x=3t-7+t=4t-7 với t là một số tự nhiên bất kì
tớ chỉ trả lời đc câu 2 thui ak thông cảm hen !
p=3
p+2=5
p+4=7
xét : p=3 là số nguyên tố (thõa mãn )
p+2 => p+2+7=p+9 chia hết cho 3 (loại)
p+4 => p+4+5=p+9 chia het cho 3 (loại)
vậy p=3
a) Tìm x,y thuộc Z thỏa : xy=x+y
b) Tìm n sao cho: n^1988+n^1987+1 là số nguyên tố