tim x biết 25 : x =5
tim x biết 25x+1+52.x+1+53=18875
Tim x,biết:
a,15 - 5.(x + 4) = - 12 - 3
b, ( 7 - x ) - ( 25 + 7) = - 25
c, | x + 2 | = 0
d, | x + 3 | + 7 - ( - 2)
e, | x - 5| = | - 7 |
g, - x - 20-(8 - 2x) = (-12-3)
a) <=> 15-5x-20=-12-3
<=> -5x=-12-3-15+20=-10
=>x=-10:(-5)=2
b)<=>7-x-25-7=-25
<=> -x=-25-7+25+7=0 =>x=0
c) /x+2/=0 => x+2=0 =>x=-2
d) sai đề
e)<=> /x-5/ = 7
<=> \(\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
g) <=> -x-20-8+2x=-15
<=> x=-15+20+8=13
tim tất cả các cặp số nguyên (x;y) thỏa mãn phuong trinh\(y=\frac{2x^3+x^2-11x+5}{2x-3}\) biết rằng :-25=<x ;y>=25
tim x:(3*x-1)/40-5*x=25-3*x/5*x-34
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{3x-1}{40-5x}=\frac{25-3x}{4x-34}=\frac{\left(3x-1\right)+\left(25x-3x\right)}{\left(40-5x\right)+\left(5x-34\right)}=4\)
\(\Rightarrow\frac{3x-1}{40-5x}=4\)
\(\Rightarrow3x-1=3\left(40-5x\right)\)
\(\Rightarrow3x-1=160-20x\)
\(\Rightarrow23x=161\)
\(\Rightarrow x=161:23\)
\(\Rightarrow x=7\)
tim X
a,( 25 * 12 - X - 25 ) : 25 = 4
b,180 - ( X + 15 ) : X * 20 = 100
c,125 + ( X - 25 ) * 5 + X = 150
d,X : 8 * 32 + X: 3 * 18 - X: 5 *10 = 120
d, X/8*32+X/3*18-X/5*10=120
X*32/8+X*18/3-X*10/5=120
32X/8+18X/3-10X/5=120
4X+6X-2X=120
8X=120
X=120/8
X=15
a, ( 25 * 12 - X - 25 ) : 25 = 4
( 25 * 12 - x - 25 ) = 4 * 25
( 25 * 12 - x - 25 ) = 100
300 - x - 25 = 100
300 - x = 100 + 25
300 - x = 125
x = 300 - 125
x = 175
tim x;
x-5+25=5+8
x - 5 + 25 = 13
x - 30 = 13
x =13 +30
x =43
x-5+25=5+8
x-5+25=13
x-30 =13
x=43
mik ko chac lam neu dung tick mik vs
tim x
2+ x : 3/ 5 = 25 / 4
x:3/5=25/4-2
x:3/5=17/4
x=17/4.3/5
x=51/20
2+ x : 3/ 5 = 25 / 4
2+ x =25/4x3/5
2+x=15/4
x=15/4-2
x=7/4
Tìm x:
\(2+x:\dfrac{3}{5}=\dfrac{25}{4}\)
\(x:\dfrac{3}{5}=\dfrac{25}{4}-2\)
\(x:\dfrac{3}{5}=\dfrac{17}{4}\)
\(x=\dfrac{17}{4}\)x\(\dfrac{3}{5}\)
\(x=\dfrac{51}{20}\).
1 TIM X
a,(x^2+5) nhan (x^2-25)=0
b,(x^2-5)nhan (x^2-25)<0
tim x : x2 - 25 - ( x + 5 ) = 0
Ta có ; x2 - 25 - (x + 5) = 0
=> x2 - 52 - (x + 5) = 0
=> (x - 5) (x + 5) - (x + 5) = 0
=> (x + 5) (x - 6) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)