Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiển
Xem chi tiết
Nhok's Baka's Ot...
Xem chi tiết
Phùng Minh Quân
28 tháng 7 2019 lúc 15:09

Đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\)\(\left(k>0\right)\)\(\Rightarrow\)\(a=Ak;b=Bk;c=Ck;d=Dk\)

\(\Rightarrow\)\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=A\sqrt{k}+B\sqrt{k}+C\sqrt{k}+D\sqrt{k}\)

\(=\sqrt{k}\left(A+B+C+D\right)\)

\(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(Ak+Bk+Ck+Dk\right)\left(A+B+C+D\right)}\)

\(=\sqrt{k}\left(A+B+C+D\right)\)

=> đpcm 

Phạm Minh Hiếu
Xem chi tiết
Phạm Tuấn Đạt
27 tháng 10 2017 lúc 21:32

Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)

Thay (1) vào ta có :

\(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3\left(kb\right)^2+\left(kd\right)^2}{3b^2+d^2}=\frac{3k^2b^2+k^2+d^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\)(1)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2)

\(\Rightarrow\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(\RightarrowĐPCM\)

roronoa zoro
Xem chi tiết
Lê Minh Tú
13 tháng 12 2017 lúc 22:44

Ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)

\(\Rightarrow\frac{a+b-2c}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

\(\Rightarrow\frac{a}{c}+\frac{b}{c}-2=\frac{c}{b}+\frac{a}{b}=\frac{b}{a}+\frac{c}{a}\)

ST
14 tháng 12 2017 lúc 8:48

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)

=> a+b-c/c = 1 => a+b-c = c => a+b = 2c

b+c-a/a = 1 => b+c-a = a => b+c = 2a

c+a-b/b = 1 => c+a-b = b => c+a = 2b

=> P = \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{c}{b}\right)\cdot\left(1+\frac{a}{c}\right)=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Phùng Thanh Hằng _6a
Xem chi tiết
Đinh Tuấn Việt
5 tháng 10 2015 lúc 22:13

b = (a + c) : 2

Thay vào ta có :

\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{\left(a+c\right):2}+\frac{1}{d}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{2}{a+c}+\frac{1}{d}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{1}{a+c}+\frac{1}{2d}\)

\(\Rightarrow\frac{a}{c.\left(a+c\right)}=\frac{1}{2d}\)

.....

Nguyễn Thị Thanh Trang
Xem chi tiết
An Vy
Xem chi tiết
Trần Phúc Khang
24 tháng 7 2019 lúc 14:33

b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\)\(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)

 \(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)

Cộng các bĐT trên

=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Ta  có Với \(0< \frac{x}{y}< 1\)

=> \(\frac{x}{y}< \frac{x+z}{y+z}\)

Áp dụng ta có 

\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)

Vậy 2<B<3

Nguyễn Thiều Công Thành
Xem chi tiết
Cố gắng hơn nữa
16 tháng 8 2017 lúc 15:15

bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi 

Cố gắng hơn nữa
16 tháng 8 2017 lúc 15:31

rồi được rồi nhưng hơi dài nên mình sẽ viết 2 lần nhé

Cố gắng hơn nữa
16 tháng 8 2017 lúc 15:47

do a;b;c;d bình đẳng với nhau nên ta đặt \(a\ge b\ge c\ge d>0\).Ta có:

Đặt cả cái bài là A => \(A\ge\frac{\left(a-b\right)\left(a-c\right)+\left(b-c\right)\left(b-d\right)+\left(c-d\right)\left(c-a\right)+\left(a-d\right)\left(b-d\right)}{3a}\)

đặt cái trên nhé là B => \(B=\frac{a^2+b^2+c^2+d^2-2ac-2bd}{3a}\)

mà \(a^2+b^2+c^2+d^2\ge2ac+2bd\)=> \(a^2+b^2+c^2+d^2-2ac-2bd\ge0\)=> \(B\ge0\)=>\(A\ge B\ge0\)

Vậy đó là điều phải chứng minh

Phạm Trung Nguyên
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 3 2020 lúc 13:26

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)

Khách vãng lai đã xóa