\(3-\left(-\dfrac{6}{7}\right)^0+\sqrt{9}:2\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2.\left(\dfrac{-1}{2}\right)^3+\sqrt{4}\)
2) \(3-\left(\dfrac{-6}{7}\right)^0+\sqrt{9}:2\)
3) \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-64\right|\)
4) \(\left(-\dfrac{1}{2}\right)^4+\left|-\dfrac{2}{3}\right|-2007^0\)
5) \(\dfrac{\left(0,4-\dfrac{2}{9}+\dfrac{2}{11}\right)}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\)
6) \(\left[2^3.\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\right]+\left[\dfrac{25}{22}+\dfrac{6}{25}-\dfrac{3}{22}+\dfrac{19}{25}+\dfrac{1}{2}\right]\)
1)(-1/2)^2:1/4-2.(-1/2)^3+căn 4
=1/4:1/4-2.-1/8+2
= 1-(-1/4)+2
=1+1/4+2=13/4
2) 3-(-6/7)^0+căn 9 :2
= 3-1+3:2
=3-1+3/2=7/2
3) (-2)^3+1/2:1/8-căn 25 + |-64|
= -8+4-5+64= 55
4) (-1/2)^4+|-2/3|-2007^0
= 1/16+2/3-1
= -13/48
5) = 178/495:623/495-17/60:119/120
= 2/7-2/7=0
6) [2^3.(-1/2)^3+1/2]+[25/22+6/25-3/22+19/25+1/2]
= [-1+1/2]+[(25/22-3/22)+(6/25+19/25)+1/2]
= -1/2+[1+1+1/2]
= -1/2+5/2=2
Mấy cái dấu chấm đó là nhân nha bn!
Tính:
a) \(\sqrt{\dfrac{9}{16}}-\dfrac{5}{6}+\dfrac{3}{2}\) b) \(\left(\dfrac{1}{9}+\dfrac{2}{3}\right)^2-\dfrac{5}{3}:\sqrt{25}\)
c)\(\dfrac{5}{11}.\left(-\dfrac{3}{7}\right)+\dfrac{5}{11}.\left(\dfrac{-5}{7}\right)+\left(-\dfrac{8}{7}\right).\dfrac{6}{11}\)
d) \(\dfrac{2^8.2^{18}}{8^5.4^6}\)
a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)
b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)
c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)
d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)
rút gọn
a) \(\left(-7\sqrt{7}\right)\left(-2\sqrt{8}\right)\)
b) \(-\sqrt{33}.3\sqrt{3}\)
c) \(\left(3\sqrt{5}\right).\left(-10\sqrt{3}\right)\)
d) \(\dfrac{1}{2}\sqrt{5}.\left(-6\sqrt{2}\right)\)
e) \(\dfrac{2}{3}\sqrt{7}.\left(-\dfrac{9}{16}\sqrt{3}\right)\)
f) \(15\sqrt{6}:5\sqrt{3}\)
g) \(-25\sqrt{12}:\left(-5\sqrt{6}\right)\)
h) \(36\sqrt{8}:12\sqrt{2}\)
i) \(4\sqrt{27}:\left(-2\sqrt{3}\right)\)
i: =-12*căn 3/2căn 3=-6
h: =72căn 2/12căn 2=6
g: =25căn 12/5căn 6=5căn 2
f: =(15:5)*căn 6:3=3căn 2
d: =-1/2*6*căn 10=-3căn 10
Cho biểu thức:
\(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
với x > 0 , x ≠ 4 , x ≠ 9
a. Rút gọn B
b. Tìm B khi x = 7 - 4 \(\sqrt{3}\)
a) \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=-\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
b) \(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
Thế vào B \(\Rightarrow B=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)
a) Ta có: \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-x+4\sqrt{x}-4}\)
\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)
b) Thay \(x=7-4\sqrt{3}\) vào B, ta được:
\(B=\dfrac{3}{2-\sqrt{3}-2}=-\sqrt{3}\)
Thực hiện phép tính (tính nhanh nếu có thể):
4) \(4\cdot\left(\dfrac{-1}{2}\right)^3+\left|-1\dfrac{1}{2}+\sqrt{\dfrac{9}{4}}\right|:\sqrt{25}\)
5) \(\left[6-3\cdot\left(\dfrac{-1}{3}\right)^2+\sqrt{\dfrac{1}{4}}\right]:\sqrt{0,\left(9\right)}\)
\(\left[-\sqrt{2,25}+4\sqrt{\left(-2,15\right)^2}-\left(3\sqrt{\dfrac{7}{6}}\right)^2\right]\sqrt{1\dfrac{9}{16}}\)
\(\left[-\sqrt{2,25}+4\sqrt{\left(-2,15\right)^2}-\left(3\sqrt{\dfrac{7}{6}}\right)^2\right]\sqrt{1\dfrac{9}{16}}\)
\(=\left[-1,5+4\sqrt{2,15^2}-9\cdot\dfrac{7}{6}\right]\sqrt{\dfrac{25}{16}}\)
\(=\left[4\cdot\dfrac{43}{20}-10,5-1,5\right]\cdot\dfrac{5}{4}\)
\(=\left[\dfrac{43}{5}-12\right]\cdot\dfrac{5}{4}\)
\(=\dfrac{43}{5}\cdot\dfrac{5}{4}-12\cdot\dfrac{5}{4}\)
\(=\dfrac{43}{4}-15=\dfrac{-17}{4}\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
* Thực hiện phép tính:
a. \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b. \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c. \(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{2-\sqrt{5}}\)
* Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=8\)
b. \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)
c. \(\sqrt{9x-9}+1=13\)
bài 1:
a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)
\(=-33\sqrt{2}\)
b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
\(=10-2\sqrt{21}+14\sqrt{21}\)
\(=12\sqrt{21}+10\)
Bài 2:
a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)
\(\Leftrightarrow\left|2x+3\right|=8\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}=8\)
hay x=4
c: Ta có: \(\sqrt{9x-9}+1=13\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow x-1=16\)
hay x=17
* Thực hiện phép tính.
a.\(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b.\(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c.\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right).\dfrac{1}{2-\sqrt{5}}\)
d.\(\sqrt{\left(2-\sqrt{5}\right)^2-\sqrt{5}}\)
a) \(\text{2}\sqrt{\text{18}}-9\sqrt{50}+3\sqrt{8}\)
= \(\text{6}\sqrt{\text{2}}-45\sqrt{2}+6\sqrt{2}\)
= \(-33\sqrt{2}\)
b) = \(7-2.\sqrt{7}.\sqrt{3}+3+7.2\sqrt{21}\)
= \(10-2\sqrt{21}+14\sqrt{21}\)
= \(10+12\sqrt{21}\)