Tìm x biết 7x+8x+9x+...+100x=1025
Tìm X thuộc N biết 7x+8x+9x+10x+.....+201x-280 =20000
7x + 8x + 9x + 10x +.....+ 201x - 280 = 20000
=> (7+8+9+10+....+201)x = 20280
=> 20280x = 20280
=> x = 20280 : 20280
=> x = 1
Tìm X thuộc N biết
7X+8X+9X+10X+............+201X-280=20000
Tìm x biết:
a)(2x-3)-(x-5)=(x+7)-(x+2)
b)(7x-5)-(6x+4)+(2x+3)-(2x+1)
c)(9x-3)-(8x+5)=(3x+2)
d)(x+7)-(2x+3)=(3x+5)-(2x+4)
a) ( 2x - 3 ) - ( x - 5 ) = ( x + 7 ) - ( x + 2 )
<=> 2x - 3 - x + 5 = x + 7 - x - 2
<=> x = 3
b)(7x-5)-(6x+4)=(2x+3)-(2x+1)
<=> 7x - 5 - 6x - 4 = 2x + 3 - 2x - 1
<=> x = 11
c)(9x-3)-(8x+5)=(3x+2)
<=> 9x - 3 - 8x - 5 = 3x + 2
<=> -2x = 10
<=> x = -5
d)(x+7)-(2x+3)=(3x+5)-(2x+4)
<=> x + 7 - 2x - 3 = 3x + 5 - 2x - 4
<=> -2x = -3
<=> x = 3/2
ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠ
Tìm x :
a) 9x^2 -6x+3 = 0
B) x^2 - 7x +12 = 0
C) x^2 -8x +6 =0
a) \(9x^2-6x+3=0\)
\(\Leftrightarrow\left(3x\right)^2-2.3x.1+1^2+2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=-2\) ( vô lí )
b) \(x^2-7x+12=0\)
\(\Leftrightarrow x^2-2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{2}=\frac{1}{2}\\x-\frac{7}{2}=-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
Vậy : \(x\in\left\{3,4\right\}\)
c) \(x^2-8x+6=0\)
\(\Leftrightarrow x^2-2.x.4+4^2-10=0\)
\(\Leftrightarrow\left(x-4\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{10}\\x-4=-\sqrt{10}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{10}+4\\x=-\sqrt{10}+4\end{cases}}\)
x+4x+7x+...+100x=8585
tìm x
\(x+4x+7x+...+100x=8585\)
\(\Leftrightarrow x\left(1+4+7+...+100\right)=8585\)
\(\Leftrightarrow\frac{\left(100+1\right)\left[\left(100-1\right)\div3+1\right]}{2}x=8585\)
\(\Leftrightarrow\frac{101.34}{2}x=8585\)
\(\Leftrightarrow101.17x=8585\)
\(\Leftrightarrow1717x=8585\)
\(\Leftrightarrow x=\frac{8585}{1717}\)
\(\Leftrightarrow x=5\)
Vậy x = 5
x-7x-8x-9x-x0x-x9x-x8x-x9=?
tìm x
a, \(x^2-4x+\dfrac{1}{4}\)
b, \(8x^2-25\)
c, \(x^2+7x=8\)
d, \(x^3-3x=-27+9x\)
e, x(x-3)-7x=-21
f, \(x^3-2x^2+x-2=0\)
g, \(x^2-4x=-4\)
h, \(x^3-x^2+x=-1\)
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)
Bài 3.Tìm x để \(\sqrt{ }\) có nghĩa
a)\(\sqrt{\dfrac{3}{x+7}}\)
b)\(\sqrt{\dfrac{-2}{5-x}}\)
c)\(\sqrt{x^2-7x+10}\)
d)\(\sqrt{x^2-8x+10}\)
e)\(\sqrt{9x^2+1}\)
Tìm x để căn có nghĩa ak mn giúp e với ak
\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)
a) \(ĐK:x+7>0\Leftrightarrow x>-7\)
b) \(ĐK:5-x< 0\Leftrightarrow x>5\)
c) \(ĐK:x^2-7x+10\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
d) \(ĐK:x^2-8x+10\ge0\)
\(\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
e) Do \(9x^2+1\ge1>0\)
Nên biểu thức được xác định với mọi x