Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
rfgafd khánh
Xem chi tiết
ĐẶNG QUỐC SƠN
Xem chi tiết
Trần Thị Thảo Ngọc
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Thân Gia Bảo
4 tháng 4 2016 lúc 18:30

?

?

?

?

?

?

?

?

?

?

?

?

?

?

ơơơ

ơ

ơ

ơ

ơ

ơ

ơ

ơ

Vũ Việt Anh
4 tháng 4 2016 lúc 19:37

????????????????????

pham trung hieu
4 tháng 4 2016 lúc 20:20

fgsfgsgggdg

Thái Doãn Kiên
Xem chi tiết
thuan doan
5 tháng 5 2019 lúc 16:51

sử dụng phương pháp miền giá trị

Thái Doãn Kiên
5 tháng 5 2019 lúc 20:32

bạn nói rõ hơn được không?

Trần Hoàng Thiên Bảo
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 10:57

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

alibaba nguyễn
19 tháng 11 2016 lúc 11:02

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

alibaba nguyễn
19 tháng 11 2016 lúc 11:08

3/ Điều kiện xác định bạn tự làm nhé

\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)

\(\Leftrightarrow8x+67\sqrt{x}+1=0\)

Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm

Megpoid gumi gumiya
Xem chi tiết
Cỏ dại
Xem chi tiết
Lê Nguyễn Ngọc Trâm
Xem chi tiết
@Nk>↑@
12 tháng 12 2019 lúc 22:28

a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)

\(\Leftrightarrow\sqrt{x}+1\ge1\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)

\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)

\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)

\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi x=0

Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0

Khách vãng lai đã xóa