chứng minh rằng 9x-x^2-25 x <0 với mọi x
Cho hai đa thức P(x)=x^5-2x^3+3x^4-9x^2+11x-6 và Q(x)=3x^4+x^5-2(x^3+4)-10x^2+9x. Đặt H(x)=P(x)-Q(x) 1. Chứng minh rằng H(x) không có nghiệm 2. Chứng tỏ rằng H(x) khác 2008 với mọi x thuộc Z
Cho hai đa thức P(x)=x^5-2x^3+3x^4-9x^2+11x-6 và Q(x)=3x^4+x^5-2(x^3+4)-10x^2+9x. Đặt H(x)=P(x)-Q(x)
1. Chứng minh rằng H(x) không có nghiệm
2. Chứng tỏ rằng H(x) khác 2008 với mọi x thuộc Z
a. c(x)=x5−2x3+3x4−9x2+11x−6−(3x4+x5−2x3−8−10x2+9x)
c(x)=x2+2x+2
b. Để c(x)=2x+2 thì x2=0⇒x=0
c. Với c(x)=2012, ta có:
c(x)=x2+2x+2=(x+1)2+1=2012
⇔(x+1)2=2011⇒x+1∉Z⇒x∉Z
Chứng minh rằng: g(x)= x3+x2+9x+9 <0
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
a) 9x+2x-x=0
x(9+2-1)=0
10x=0
=)x=0
b)25-9x=0
9x=25
=)x=25/9
2)
x2>=0
x4>=0
=)x2+x4>=0
=)x2+x4+1>=1
=)da thức vô nghiệm
dùng định nghĩa hai phân thức bằng nh chứng minh các đẳng thức sau:
5+x/5-x=25-x^2/x^2-10+25
x^3-9x/18-6x=-x^2-3x/6
mình nghĩ đề sai .vậy mới đúng nè:
\(\dfrac{5+x}{5-x}=\dfrac{25-x^2}{x^2-10x+25}\)
<=> \(\dfrac{\left(x+5\right)}{\left(x-5\right)}-\dfrac{5^2-x^2}{x^2-2.5.x+5^2}=0\)
<=> \(\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\left(x-5\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-5\right)^2}=0\) (đúng với mọi x)
\(\dfrac{x^3-9x}{18-6x}\) hay \(\dfrac{x^3-9x}{6x-18}\) vậy
\(\dfrac{x^3-9x}{18-6x}=\dfrac{x^2-3x}{6}\)
\(\Leftrightarrow\dfrac{x\left(x^2-9\right)}{6\left(3-x\right)}-\dfrac{x\left(x-3\right)}{6}=0\)
\(\Leftrightarrow\dfrac{-x\left(x-3\right)\left(x+3\right)}{6\left(x-3\right)}-\dfrac{x\left(x-3\right)}{6}=0\)
\(\Leftrightarrow-\dfrac{x\left(x+3\right)}{6}-\dfrac{x\left(x-3\right)}{6}=0\)
\(\Leftrightarrow\dfrac{-x^2-3-x^2+3}{6}=0\Leftrightarrow-2x^2=0\Leftrightarrow x=0\)
Vậy để hai phân thức trên bằng nhau thì \(x=0\)
Chứng minh rằng biểu thức A=(8x/(9x^2-4)-2x/(3x+2))/-[6/(9x^2-4)]+2 luôn dương với mọi x thuộc tập xác định.
Bài 2:Chứng minh rằng biểu thức: M=(1/3x-y)(x^2+3xy+9x^2)+9x^3-1/3x^3 có giá trị không phụ thuộc x, y
1. Cho đa thức \(f\left(x\right)=x^3-3x^2+9x+1964\). Chứng minh rằng tồn tại số nguyên \(a\) sao cho \(f\left(a\right)⋮3^{2014}\)
2. Chứng minh rằng với mọi \(a\inℤ\), phương trình \(x^4-2007x^3+\left(2006+a\right)x^2-2005x+a=0\) không thể có 2 nghiệm nguyên phân biệt.
3. Tìm tất cả các số nguyên dương \(n\) sao cho \(2^n-1|3^n-1\)
cho hai đa thức : P(x)=5x^3+6x^2-9x+4 . Q(x)=-5x^3-4x^2+9x+5 . chứng minh rằng : không tồn tại giá trị nào của x để hai đa thức P(x) và Q(x) có cùng giá trị không dương
Chứng minh rằng: Nếu \(x^4-4x^3+5ax^2-4bx+c⋮x^3+3x^2-9x-3\)