Cho △MNP vuông tại M ,NP=26,NM=24. Tính MN, góc P,N
Cho tam giác MNP vuông tại M, MH vuông góc với NP (H thuộc NP) ,MN = 3; MB = 4. Tia phân giác ND của góc MNP cắt MP tại D ; MH tại K . a) tính DM; DP b) chứng minh : KH/KM = DM/DP c) Chứng minh : NH×ND=NM×NK và Tam giác MDK cân .
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M
CHO TAM GIÁC MNP VUÔNG TẠI N(NM<NP), TIA PHÂN GIÁC CỦA GÓC M CẮT CẠNH NP TẠI K.TRÊN MP LẤY ĐIỂM I SAO CHO MN=MI
A) CHỨNG MINH TAM GIÁC MNK = TAM GIÁC MIK. SUY RA TAM GIÁC NKI CÂN
B) TIA MN CẮT TIA IK TẠI E. CHỨNG MNH MK VUÔNG GÓC EP
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
Cho tam giác MNP vuông tại M (MN<MP). Trên NP lấy Q sao cho NM=NQ. Qua Q, kẻ d vuông góc với NP, d cắt MP tại R.
a)Nếu góc MNP=2MPN. Tính số đo 2 góc đó?
b)CM: Tam giác MNR= tam giác QNR, từ đó suy ra NR là phân giác của góc MNP
c)Trên tia đối của tia MN,lấy K sao cho MK=MN.
CM: Tam giác PNK cân
Cho tam giác MNP vuông tại M (MN<MP). Trên NP lấy Q sao cho NM=NQ. Qua Q, kẻ d vuông góc với NP, d cắt MP tại R.
a)Nếu góc MNP=2MPN. Tính số đo 2 góc đó?
b)CM: Tam giác MNR= tam giác QNR, từ đó suy ra NR là phân giác của góc MNP
c)Trên tia đối của tia MN,lấy K sao cho MK=MN.
CM: Tam giác PNK cân
cho tam giác MNP cân tại M Vẽ mi vuông góc với NP tại I
Chứng minh MI là đường trung trực của N P
vẽ IE vuông góc với MN tại A, IB vuông góc với MP tại B chứng minh tam giác IAB cân
Giả sử góc MNP = 45° MN = 2 cm Tính NP
Giả sử góc MNP = 30 độ Chứng minh tam giác AIB đều
cho tg mnp vuông tại m ( mn < mp) kẻ đường pg ni của góc nmp ( i thuộc mp ). trên cạnh np lấy điểm nk = nm. gọi a là gd ki và nm. cm: ni vuông góc ap
Cho tam giác MNP vuông tại M,tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với NP gọi F là giao điểm của NM và DE
a.Chứng minh MN=NE
b.Chứng minh ND vuông góc với FP
a.Gọi H là giao điểm của NP và FP. Trên tia đối của tia DF lấy điểm K sao cho DK=DF lấy điểm I trên DP sao cho PE=2 lần DI
Chứng minh KHI thẳng hàng.
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>MN=NE
b: Xét ΔNFP có
PM,FE là đường cao
PM cắt FE tại D
=>D là trực tâm
=>ND vuông góc FP
Cho tam giác MNP vuông tại M. Kẻ MK vuông góc với NP ( K thuộc NP ). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI.
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
Cho tam giác MNP vuông tại M, MN nhỏ hơn MP, có đường cao MH. Biết rằng: MP = 12cm; NP =15cm, NM = 9cm; PH = 9,6cm
a)Tính các tỉ số lượng giác của góc N
b) Trên cạnh HP lấy điểm K sao cho HN = HK. Qua K vẽ đường thẳng vuông góc với NP và cắt MP tại I. Tính IP.
Câu 11. Cho MNP vuông tại M có MN < MP, kẻ đường phân giác NI của góc MNP (I thuộc MP ). Kẻ IK vuông góc với NP tại K .
a) Chứng minh IMN =
IKN
b) Gọi A là giao của NM và KT. Chứng minh AMI =
PKI và KI < AI
c) Từ P kẻ đường thẳng vuông góc với NI tại H . Chứng minh A; H; P thẳng hàng
a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co
NI chung
góc MNI=góc KNI
=>ΔNMI=ΔNKI
b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có
IM=IK
góc MIA=góc KIP
=>ΔIMA=ΔIKP
=>KI=IM
=>KI<IA