tinh GTNN |x + 2016| + 2107 / |x + 2016| + 2018
tinh GTNN |x + 2016| + 2107 / |x + 2016| + 2018
tìm GTNN A=(/x-2016/+2018-1/)/(x-2016/+2018)
Tìm GTNN của biểu thức: A= (|x-2016| + 2017)/(|x - 2016| + 2018)
Ta có:
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\Rightarrow\frac{1}{\left|x-2016\right|+2018}\le\frac{1}{2018}\)
=>\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge\frac{2017}{2018}\)
=>\(A_{min}=\frac{2017}{2018}\)<=>|x-2016|=0<=>x-2016=0<=>x=2016
tim GTNN
|x + 2016| + 2017 / |x + 2016| + 2018
giup mik nha, cho 5 k
Tìm GTNN của A=\(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
tìm GTNN của \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
tìm GTNN của \(\frac{\left|x-2016\right|+2017}{\left|\text{x}-2016\right|+2018}\)
ta thấy trị tuyệt đối của x-2016 lớn hơn hoặc bằng 0 với mọi x. Vậy phân thức nhỏ nhất bằng 2017/2018
Tìm GTNN của A = \(\dfrac{\left[x-2016\right]+2017}{\left[x-2016\right]+2018}\)
Nếu thế thì làm lại!
A đạt giá trị nhỏ nhất khi \(\left[x-2016\right]\)nhỏ nhất
\(\Rightarrow\left[x-2016\right]\ge0\)
\(\Rightarrow x=0+2016=2016\)
\(\Rightarrow A_{min}=\dfrac{\left[2016-2016\right]+2017}{\left[2016-2016\right]+2018}=\dfrac{2017}{2018}\)
A đạt giá trị nhỏ nhất khi:
\(\left[x-2016\right]+2017\) nhỏ nhất
Giá trị nhỏ nhất của x đạt được khi x là số âm
\(\Rightarrow x=2016-2017=-1\)
\(\Rightarrow GTNN_A=\dfrac{\left[-1-2016\right]+2017}{\left[-1-2016\right]+2018}=\dfrac{0}{1}=0\)
Vậy..
tìm GTNN của B=/x-2016/+/x-2017/+/x-2018/+/x-2019/
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.