tìm số tự nhiên n để : (n2-8)2+36 là số nguyên tố
Tìm số tự nhiên n để \(\left(n^2-8\right)^2+36\) là số nguyên tố.
Tìm số tự nhiên k để 3.k là số nguyên tố
Tìm số tự nhiên k để 7.k là số nguyên tố
a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một
=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó
=> k=1
a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một
=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó
=> k=1
tìm số tự nhiên n để
n2+2n là số nguyên tố
2n+2 là số nguyên tố
Tìm số tự nhiên n để 4n+n^2 là số nguyên tố
Có : 4n+n^2 = n.(n+4)
Để n.(n+4) là số nguyên tố thì n=1 hoặc n+4= 1
=> n=1 hoặc n=-3
Mà n là số tự nhiên => n=1
Khi đó : n^2+4n = 1^2+4.1 = 5 là số nguyên tố (tm)
Vậy n = 1
k mk nha
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.
Tìm số tự nhiên n để(n+3).( n+1) là số nguyên tố
tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố
(n+3)(n+1) là số nguyên tố
<=> n+3=1 hoặc n+1=1
n+3=1=>n=-2(vô lí)
n+1=1=>n=0
Vậy (n+3)(n+1) là số nguyên tố khi và chỉ khi n=0
Mọi người tick ủng hộ nhé!!!!!!!!!!!!!!!!
(n + 3)(n + 1) là số nguyên tố
< = > n + 3 = 1 hoặc n + 1 = 1
n + 3 = 1 => n= -2 (vô lí)
n + 1 = 1 => n = 0
Vậy (n + 3)(n+ 1) là số nguyên tố kh và chỉ khi n = 0
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau
Giả sử \(7n+13\) và \(2n+4\) cùng chia hết cho số nguyên tố d
Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)
Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)
Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\) và \(2n+4\) là hai số nguyên tố cùng nhau
Đặt (7n + 13; 2n + 4) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)
\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d
\(\Rightarrow\) 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)
mà 7n + 13 \(⋮̸\)2
\(\Rightarrow\) d = 1
Vậy (7n + 13; 2n + 4) = 1