Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Hồng Nhung
Xem chi tiết
gta dat
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 10 2020 lúc 15:22

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

Khách vãng lai đã xóa
Cherry Hien
Xem chi tiết
Đức Hiếu
18 tháng 6 2017 lúc 9:28

Ta có:

\(A+B+C=x^2y+xy^2+xy\)

\(=xy.\left(x+y+1\right)\)

mà theo bài ra \(x+y=-1\) nên

\(A+B+C=xy.\left(-1+1\right)=xy.0=0\)

Vậy \(A+B+C=0\) (đpcm)

Chúc bạn học tốt!!!

Nguyễn Huy Tú
18 tháng 6 2017 lúc 9:14

Ta có: \(A+B+C=x^2y+xy^2+xy\)

\(=xy\left(x+y+1\right)=xy\left(-1+1\right)=0\)

\(\Rightarrowđpcm\)

Tài Nguyễn
Xem chi tiết
nguyen tan 12
Xem chi tiết
nguyen tan 12
25 tháng 4 2018 lúc 13:55

khong dung bdt cosi nhe

Không Tên
25 tháng 4 2018 lúc 20:02

bài này ko dùng cô-si nhé, đề chỉ cho x,y là số thực và thỏa mãn \(xy\ge1\) chứ ko nói j đến dương, tham khảo bài lm của mk nhé:

                                BÀI LÀM

       \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\)\(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

\(\Leftrightarrow\)\(\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\) \(\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+xy\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x+xy^2-y-x^2y\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x-y\right)\left(1-xy\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

đến đây bn tự giải thích và làm tiếp nhé

CÁCH 2:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+y^2+x^2+x^2y^2}\)

Ta luôn có:   \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

Áp dụng BĐT trên ta có:   \(x^2+y^2\ge2xy\) mà   \(xy\ge1\) nên  \(x^2+y^2\ge2\)

\(xy\ge1\)  \(\Rightarrow\)\(\left(xy\right)^2=x^2y^2\ge1\)

Khi đó:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{1+x^2+y^2}{1+x^2+y^2+x^2y^2}\ge\frac{2xy+1}{2xy+1+1}\ge\frac{2+2}{2xy+2}=\frac{4}{2\left(xy+1\right)}=\frac{2}{1+xy}\)

\(\Rightarrow\)\(VT\ge\frac{2}{1+xy}\)hay   \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (đpcm)

tth_new
17 tháng 12 2019 lúc 9:01

Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\)\(=1-\frac{\left(xy-1\right)\left(xy+1\right)}{\left(xy+1\right)^2+\left(x-y\right)^2}\ge1-\frac{\left(xy-1\right)\left(xy+1\right)}{\left(xy+1\right)^2}=\frac{2}{1+xy}\)

Khách vãng lai đã xóa
Kiều Ngọc Diễm
Xem chi tiết
thanh thao
Xem chi tiết
Edogawa G
Xem chi tiết
Umi
26 tháng 8 2018 lúc 16:19

x + y = 2

=>(x - 1) + (y - 1) = 0

=> x - 1 đối y - 1

=> (x - 1)(y - 1) 

=> (x - 1)(y - 1) ≤ 0

=> xy - x - y + 1 ≤ 0

=> xy - (x + y) + 1 ≤ 0

=> xy - 2 + 1 ≤ 0

=> xy - 1 ≤ 0

=> xy < 1 (đpcm)

Doan Duc Huy
Xem chi tiết
Đinh Thùy Linh
15 tháng 6 2016 lúc 13:46

Nhân ra thôi mà Huy, mà đánh cái đề cũng nhầm hả?? :D

(x3 + x2y + xy2 +y3)(x - y) = x4 + x3y + x2y2 + xy3 - x3y - x2y2 - xy3 - y4 = x4 - y4    ĐPCM