Tìm giá trị nhỏ nhất của \(A=x+\sqrt{2016+x}\)
Tìm giá trị nhỏ nhất của biểu thức
\(A=x-\sqrt{x-2016}\)
Ta có:
\(A=x-\sqrt{x-2016}\\ =x-2016-\sqrt{x-2016}+\dfrac{1}{4}+\dfrac{8023}{4}\\ =\left(\sqrt{x-2016}-\dfrac{1}{2}\right)^2+\dfrac{8023}{4}\ge\dfrac{8023}{4}\)
Do đó:
\(A_{min}=\dfrac{8023}{4}\) tại \(\sqrt{x-2016}=\dfrac{1}{2}\Rightarrow x=\dfrac{8065}{4}\)
Tìm giá trị nhỏ nhất của biểu thức D = x + \(\sqrt{x+2016}\).
Với giá trị nào của x, y thì biểu thức: A = /x - y/ + /x + 1/ + 2016 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
với giá trị nào của x thì biểu thức A= /x-2016/ + 2015 có giá trị nhỏ nhất ? tìm giá trị nhỏ nhất đó
Vì /x-2106/ >= 0
=> /x-2016/+2015 >= 2015
=> Min = 2015 <=> x = 2016
Câu 1: Cho biểu thức: \(A=x\sqrt{3+y}+y\sqrt{3+x},với\)\(x\ge0;y\ge0;x+y=2016\). Tìm giá trị nhỏ nhất của A
Tìm x để P = \(2016+\sqrt{4x^2-4x+5}\) đạt giá trị nhỏ nhất
\(P=2016+\sqrt{\left(2x-1\right)^2+4}\ge2016+\sqrt{4}=2018\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
Ta có: \(4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\sqrt{4x^2-4x+5}\ge2\Rightarrow P\ge2016+2=2018\)
\(\Rightarrow P_{min}=2018\) khi \(x=\dfrac{1}{2}\)
tìm giá trị nhỏ nhất của biểu thức A=|x-2016|+2017/|x-2016|+2018
tìm giá trị nhỏ nhất của biểu thức a= /x-2016/+2017 phần /x-2016/+2018
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất
\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
dấu = xảy ra khi |x-2016|=0
=> x=2016
Vậy Min A=\(\frac{2017}{2018}\)khi x=2016
ps: sai sót bỏ qua
tìm giá trị của x và yde
s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó
ta có: lx+3l \(\ge\) 0 với mọi x
l2y-14l \(\ge\) 0 với mọi y
=> S= |x+3|+|2y-14|+2016 \(\ge\) 2016 với mọi x,y
dấu = xảy ra là giá trị nhỏ nhất của S đạt được khi và chỉ khi S=2016.
\(\Leftrightarrow\) lx+3l = 0 và l2y-14l = 0
\(\Leftrightarrow\) x+3=0 và 2y-14=0
\(\Leftrightarrow\)x=-3 và y=7
Vậy MinS=2016 \(\Leftrightarrow\) x=-3 và y=7
Do s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất nên:
x+3=0=>x=-3
2y-14=0=>y=7