Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thư
Xem chi tiết
Kiệt Nguyễn
5 tháng 12 2019 lúc 21:23

Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương)    (1)

(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))

Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\))  (2)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\))  (3)

Cộng các BĐT (1) , (2) , (3), ta được:

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))

Khách vãng lai đã xóa
coolkid
5 tháng 12 2019 lúc 21:22

Ta có:

\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)

Tương tự:

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)

Khi đó:

\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)

\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)

\(=a+b+c=2\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

Khách vãng lai đã xóa
coolkid
5 tháng 12 2019 lúc 21:24

Á á lộn rồi:(

\(\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\) nha !!

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{b+c}+\frac{ca}{b+a}\right)\)

Khi đó:

cộng lại rồi làm tương tự

Khách vãng lai đã xóa
Phan Vũ Quỳnh Anh
Xem chi tiết
Unruly Kid
9 tháng 11 2017 lúc 11:51

\(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=\dfrac{1}{\sqrt{c}}\Rightarrow\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)^3=\dfrac{1}{\sqrt{c}^3}\)

\(\dfrac{1}{\sqrt{a}^3}+\dfrac{1}{\sqrt{b}^3}+\dfrac{3}{\sqrt{a}.\sqrt{b}}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)-\dfrac{1}{\sqrt{c}^3}=0\)

\(\dfrac{1}{\sqrt{a}^3}+\dfrac{1}{\sqrt{b}^3}+\dfrac{3}{\sqrt{a}.\sqrt{b}.\sqrt{c}}-\dfrac{1}{\sqrt{c}^3}=0\)

\(\dfrac{1}{\sqrt{c}^3}-\dfrac{1}{\sqrt{a}^3}-\dfrac{1}{\sqrt{b}^3}=\dfrac{3}{\sqrt{a}.\sqrt{b}.\sqrt{c}}\)

\(\sqrt{a}.\sqrt{b}.\sqrt{c}\left(\dfrac{1}{\sqrt{c}^3}-\dfrac{1}{\sqrt{b}^3}-\dfrac{1}{\sqrt{a}^3}\right)=3\)

\(\dfrac{\sqrt{ab}}{c}-\dfrac{\sqrt{bc}}{a}-\dfrac{\sqrt{ca}}{b}=3\left(\text{đ}pcm\right)\)

Lê Quân
Xem chi tiết
Lê Quân
29 tháng 10 2021 lúc 18:40

\(\sqrt{a}+\sqrt{b}+\sqrt{c}>=ab+bc+ca\)

Nhật Minh Trần
15 tháng 12 2021 lúc 9:00

bài này dễ thôi

Lê Thị Hương
Xem chi tiết
shitbo
22 tháng 12 2019 lúc 16:29

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{ac+bc+c^2+ab}}=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\)

\(tt\Rightarrow2\text{ lần biểu thức}=2\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+2\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+2\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

\(\le\frac{b}{b+a}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+b}\left(\sqrt{ab}\le\frac{a+b}{2}\right)=3\Rightarrow dpcm\)

Khách vãng lai đã xóa
Nguyễn Quỳnh Anh
Xem chi tiết
My Nguyễn
Xem chi tiết
Ngân Lê
Xem chi tiết
Hồng Phúc
25 tháng 12 2020 lúc 21:32

Hình như thiếu điều kiện \(a,b,c>0\)

Áp dụng BĐT Cosi:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế các BĐT trên ta được: 

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\right)\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\)

Đẳng thức xảy ra khi \(a=b=c\)

Doraemon
Xem chi tiết
Doraemon
10 tháng 11 2018 lúc 9:22

b2c2a(a+b+c)+bc+a2c2b(a+b+c)+ac+a2b2c(a+b+c)+ab" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

b2c2a2+ab+ac+bc+a2c2ab+b2+bc+ca+a2b2ca+bc+c2+ab" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

b2c2(a+b)(a+c)+a2c2(b+c)(a+b)+a2b2(c+a)(c+b)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

b2c2(a+b)(a+c)≤bca+b+bca+c2a2c2(a+b)(b+c)≤caa+b+cab+c2a2b2(c+a)(c+b)≤abc+a+abc+b2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

(bca+b+caa+b)+(cab+c+abb+c)+(bcc+a+abc+a)2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

[c(a+b)a+b]+[a(b+c)b+c]+[b(c+a)c+a]2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

a+b+c2=12" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

bca+bc+acb+ca+abc+ab≤12" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> ( đpcm )

13" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.96px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

Lê Hiệp
Xem chi tiết