đề này thiếu r` bn viết lại đi mai mk lm cho
đề này thiếu r` bn viết lại đi mai mk lm cho
Cho a,b,c thực dương t.m: a+b+c=2
CMR: P = ab/căn ( ab+2c) + bc/căn( bc+2a) +ca/căn ( ca+2b)<=1
Cho a, b, c là các số thực dương và a+b+c=1 . Chứng minh : Căn ( ab/c+ab ) + Căn ( bc/a+bc ) + Căn (ac/b+ac) <= 3/2
1/căn a + 1/ căn b =1/căn c CMR : căn (ab)/c - căn bc/a - căn (ca)/b=3
Giup mik vs !!
Cm bc/căn(a+bc)+ac/căn(b+ac)+ab/căn(c+ab) < = 1/2
cho 3 số thực dương ab,c thỏa mãn:ab+bc+ca=1. Chứng minh:((b+c)*căn(a^2+1)/(căn(b^2+1)*căn(c^2+1)
a,b,c>0 a+b+c=1 cmr B=căn (a^2-ab+b^2)+căn(b^2-bc+c^2)+căn(c^2-ac+a^2)>=1
Cho ba số dương a,b,c. Chứng minh bất đẳng thức căn(2/a) + căn(2/b) + căn(2/c) <= căn((a+b)/ab) + căn((b+c)/bc) + căn((c+a)/ac)
Cho ab + bc + ca = 1
Tìn giá trị lớn nhất của S= a/căn của (1 + a2) + b/căn của (1+ b2) + c/ căn của ( 1 + c2)
cho các số thực dương a,b,c thỏa mãn 1/a+1/b+1/c<=3.Tìm GTLN của biểu thức P=1/(căn a^2-ab+3b^2+1)+1/(căn b^2-bc+3c^2+1)=1/(căn c^2-ca+3a^2+1)