Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Minh
Xem chi tiết
Xem chi tiết
Hoàng Nguyễn Văn
18 tháng 2 2020 lúc 9:26

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)

Khách vãng lai đã xóa
Hoàng Hà
Xem chi tiết
Đỗ Đạt
30 tháng 3 2017 lúc 12:09

là số nguyên tố

Nguyen Le Thuy Duong
22 tháng 2 2018 lúc 20:55

la so nguyen to tk cho minh di

Nguyễn Hoàng Thanh Phong
21 tháng 2 2019 lúc 19:51

fuck bọn mày

Phong Bùi
Xem chi tiết
Bùi Như Ý
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 11 2023 lúc 7:50

Ta có

\(a^2+b^2+c^2+d^2+a+b+c+d=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số tự nhiên liên tiếp nên các tích trên đều chia hết cho 2

\(\Rightarrow a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)⋮2\)

Ta có

\(a^2+c^2=b^2+d^2\Rightarrow\left(a^2+b^2+c^2+d^2\right)=2\left(b^2+d^2\right)⋮2\)

\(\Rightarrow a^2+b^2+c^2+d^2⋮2\)

\(\Rightarrow a+b+c+d⋮2\)

=> a+b+c+d là hợp số

Trần Ngọc Minh Châu
Xem chi tiết
Bùi Tuấn Hưng
Xem chi tiết
Đỗ Thị Thanh Lương
25 tháng 4 2017 lúc 21:59

 Theo hằng đẳng thức 
\(a^2+b^2=\left(a+b\right)^2-2ab;\) 
\(c^2+d^2=\left(c+d\right)^2-2cd\)    

\(\Rightarrow\)
\(a^2+b^2\)\(a+b\) cùng chẵn, hoặc cùng lẻ; 
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với 
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
 nên \(a+b+c+d\) là hợp số.

Thanh Nguyễn Đức
5 tháng 5 2017 lúc 7:36

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + ab + b2 = c2 + cd + d2. Chứng minh a + b + c + d là hợp số. 

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Truong thuy vy
12 tháng 4 2018 lúc 23:16

bạn dựa vào bài tương tự này nha :

Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.

langtuthattinh và The gunners thích

#2 Nguyen Duc Thuan

Sĩ quan

Thành viên367 Bài viếtGiới tính:NamĐến từ:THPT Chuyên Hùng Vương, Phú Thọ

Đã gửi 06-02-2013 - 22:17

Vào lúc 06 Tháng 2 2013 - 22:04, 'hoangtubatu955' đã nói:

Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.

Đặt (a;c)=q thì a=qa1;c=qc1a=qa1;c=qc1 (Vs (a1;c1a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1⇔ba1=dc1
Dẫn đến d⋮a1d⋮a1 đặt d=a1d1d=a1d1 thay vào đc:
b=d1c1b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)an+bn+cn+dn=q2a1n+d1nc1n+qnc1n+a1nd1n=(c1n+a1n)(d1n+qn)
là hợp số (QED) :lol: :lol:

Kotori Minami
Xem chi tiết
Nhật Linh
9 tháng 1 2016 lúc 16:21

Theo hằng đẳng thức 
a^2+b^2=(a+b)^2-2ab; 
c^2+d^2=(c+d)^2-2cd. 
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ; 
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với 
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn, 
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì 
a+b+c+d>=4 nên a+b+c+d là hợp số.

tick cho mk nha

Ngô Trà My
Xem chi tiết
Lê Thị Phương Anh
17 tháng 3 2016 lúc 15:01

theo mình là hợp số 

Vũ Thu An
5 tháng 7 2016 lúc 8:55

Xét hiệu\(\left(a^2+b^2+c^2+d^2+e^2\right)-\left(a+b+c+d+e\right)=\)

I - Vy Nguyễn
28 tháng 2 2020 lúc 23:54

Xét : \(\left(a^2+b^2+c^2+d^2+e^2+g^2\right)+\left(a+b+c+d+e+g\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)+\left(e^2+e\right)+\left(g^2+g\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)+e.\left(e+1\right)+g.\left(g+1\right)\)

Ta có :\(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right);e.\left(e+1\right);g.\left(g+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2+e^2+g^2\right)+\left(a+b+c+d+e+g\right)\) chia hết cho \(2\)

Mà : \(a^2+b^2+c^2+d^2+e^2+g^2=2.\left(d^2+e^2+g^2\right)\) chia hết cho \(2\)

\(\implies\) \(a+b+c+d+e+g\) chia hết cho \(2\)

Mà : \(a+b+c+d+e+g\) \(\geq\) \(6\) \(\implies\) \(a+b+c+d+e+g\) là hợp số

Khách vãng lai đã xóa