Tìm n nhỏ nhất để các phân số sau là phân số tối giản: \(\frac{5}{n+8};\frac{6}{n+9};\frac{7}{n+10};.....;\frac{17}{n+20}\)
Tìm n nhỏ nhất để các phân số sau là phân số tối giản:
\(\frac{5}{n+8};\frac{6}{n+9};\frac{7}{n+10};.........\frac{17}{n+80}\)
Ta thấy các phân số đã cho có dạng: \(\frac{5}{5+\left(n+3\right)};\frac{6}{6+\left(n+3\right)};...\)
Tức là có dạng: \(\frac{a}{a+\left(n+3\right)}\)
=> Để phân số tối giản thì a và n + 3 phải là nguyên tố cùng nhau
=> n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7...;17
=> n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17
=> n + 3 = 19
=> n = 16
Vậy n nhỏ nhất thỏa mãn các phân số tối giản là n = 16
Tìm STN n nhỏ nhất để các phân số sau đều là phân số tối giản:
\(\frac{5}{n+8};\frac{6}{n+9};\frac{7}{n+10};............;\frac{17}{n+20}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau đều là phân số tối giản
\(\frac{5}{n+8};\frac{6}{n+9};\frac{7}{n+10};...;\frac{17}{n+20}\)
Tìm các STN nhỏ nhất để các phân số sau đều là phân số tối giản
\(\frac{7}{n+10};\frac{8}{n+11};...;\frac{100}{n+103}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau để là phân số tối giản :
\(\frac{7}{N+9};\frac{8}{N+10};\frac{9}{N+11};...;\frac{10}{N+102}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau đều là phân số tối giản:
\(\frac{5}{n+8},\frac{6}{n+9},\frac{7}{n+10},...,\frac{17}{n+20}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau đều là phân số tối giản:
\(\frac{n+7}{3};\frac{n+8}{4};\frac{n+9}{5};\frac{n+10}{6};\frac{n+11}{7}\)
tìm số tự nhiên n nhỏ nhất để các phân số sau đây là phân số tối giản :
\(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};...;\frac{31}{n+33}\)
Các phân số đã cho đều có dạng \(\frac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản nên n + 2 và a là số nguyên tố cùng nhau
Như vậy n + 2 phải nguyên tố cùng nhau với các số 7;8;9;....;31 và n + 2 là số nhỏ nhất
Vậy n + 2 phải là số nguyên tố nhỏ nhất lớn hơn 31 tức là n + 2 = 37, do đó số n cần phải tìm là 35
Tìm STN nhỏ nhất để các phân số sau đây là tối giản :
\(\frac{5}{n+6},\frac{6}{n+7},\frac{7}{n+8},...,\frac{31}{n+32}\)
5/n+6 = 5/(n+1)+5 ; 6/n+7 = 6/(n+1)+6 ; 7/n+8 = 7/(n+1)+7 ; ... ; 31/n+32 = 31/(n+1)+31
Ta thấy mỗi phân số trên đều có dạng a/(n+1)+a, để các phân số trên đều tối giản thì (n+1,a)=1
=> ta phải tìm n để n+1 nguyên tố với 5; 6; 7; ...; 31
Mà n nhỏ nhất => n+1 nhỏ nhất => n+1=37
=> n=37-1=36
Vậy số nhỏ nhất cần tìm là 36
Ủng hô mk nha ^_^