Giúp mk với: chứng minh rằng tổng các số tự nhiên từ 1 đến 2016 chia hết cho 2017
Chứng minh rằng từ 2017 số tự nhiên tùy ý luôn tách ra được 1 tập con khác rỗng chứa các số mà tổng của chúng chia hết cho 2017 .
chứng minh rằng tổng các số tự nhiên từ 1 đến 1000 chia hết cho 143
tổng các số tự nhiên từ 1 -> 1000 = ( 1 + 1000 ) x 1000 : 2
ta xét thấy ( 1 + 1000 ) = 1001 ( chia hết cho 143 ) => tổng trên chia hết cho 143
chứng minh rằng với mọi số tự nhiên n thì
(n+2016^2015)x(n+2017^2014) chia hết cho 2
mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp
...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp
mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2
mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập
CHÚC MAY MẮN
Tuy bài làm của bạn ko giống như bài của cô mình chữa nhưng mình cũng rất cảm ơn bạn nhé Nguyễn Lâm Văn
cho a,b,c là các số nguyên . Chứng minh rằng nếu a^2016 + b^2017 + c^2018 chia hết cho 6 thì a^2018 + b^2019 + c^2020 cũng chia hết cho 6.
Giúp mk với! :)
chứng minh rằng tồn tại số tự nhiên có tận cùng là 2016 chia hết cho 2017
nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017
và dãy 2015 só bắt đầu từ A+2 đều là hợp số :
A+2;A+3;...;A+2015;A+2015;A+2017
bởi vì A+2 chia hết cho 2
A+3 chia hết cho 3
.......
A+2016 chia hết 2016
A+2017 chia hết 2017 ( ĐPCM)
tick nhé
Cho các số tự nhiên a1, a2, ..... , a2016 có tổng bằng 20162017
Chứng minh rằng: a13 + a23 + ..... + a20163 chia hết cho 3.
Ta có (a1 + a2 + ...+a2016)3 = 20166051
<=> a13 + a23 +...+ a20163 + 3A = 20166051
Vì 20166051 và 3A chia hết cho 3 nên a13 + a23 +...+ a20163 chia hết cho 3
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018) chia hết cho 2017
Chứng minh rằng 102014+8 / 72 là một số tự nhiên
2. cho các số tự nhiên từ 1 đến 21 được viết theo thứ tự tùy ý, sau đó đem cộng mỗi số với số chỉ thứ tự của nó được một tổng. Chứng minh rằng trong các tổng nhận được bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10
b) Cho các số tự nhiên từ 11 đến 21 viết theo thứ tự tùy ý, sau đó đem cộng mỗi số đó với số chỉ thứ tự của nó ta được tổng. Chứng minh rằng trong các tổng nhận được bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Giúp mik với...pls!!! 🙏🙏🏻
Khi xét 1 số tự nhiên khi chia cho 10 => Có thể xảy ra 10 trường hợp về số dư (1) Mà các số tự nhiên từ 11 --> 21 gồm (21 - ) + 1 = 11 số.Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng => Có 11 tổng , mỗi tổng đều có giá trị là 1 số tự nhiên (2)Từ (1) và (2) => Trong 11 tổng trên chắc chắn có 2tổng có cùng số dư khi chia cho 11 => Luôn hai tổng có hiệu chia hết cho 10.