Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trung Hiêu
Xem chi tiết
Đinh Đức Hùng
7 tháng 8 2017 lúc 9:46

\(x^2+9y^2+4z^2-2x+12y-4z+20=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\)(1)

Ta thấy\(\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\forall x;y;z\)

Nên dấu (1) không thể xảy ra , Hay \(x;y;z\) ko tồn tại (đpcm)

nameless
Xem chi tiết
Lê Hồ Trọng Tín
8 tháng 9 2019 lúc 12:22

Cách giải dùng dãy tỉ số để giải thôi

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{\left(8x-12y\right)+\left(12y-24z\right)}{-7-9}=\frac{8x-24z}{-16}=\frac{24z-8x}{16}\)

Mà theo đề bài thì \(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{24z-8x}{-13}\)

Do đó \(\frac{24z-8x}{-13}=\frac{24z-8x}{16}\Rightarrow24z-8x=0\Leftrightarrow z=\frac{x}{3}\)

Làm tương tự ta cũng được \(8x=12y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

Suy ra \(\frac{x}{3}=\frac{y}{2}=z\)và x2+y2+z2=350

Tới đây dùng tính chất dãy tỉ số bằng nhau tính ra x=75,y=50;z=25

Vậy x=75;y=50;z=25

Nguyễn Mai
Xem chi tiết
ĐoànThùyDuyên
Xem chi tiết
Nhã Doanh
27 tháng 6 2018 lúc 7:08

a. \(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

Shinnôsuke
Xem chi tiết
Sky Love MTP
3 tháng 2 2016 lúc 20:20

 Câu trả lời hay nhất:  2x/3 = 3y/4 => y = (4/3)(2x/3) = 8x/9 
2x/3 = 4z/5 => z = (5/4)(2x/3) = 10x/12 = 5x/6 
=> x + y + z = x + 8x/9 + 5x/6 = 49 
hay là 
(18 + 16 + 15)x/18 = 49, tu'c là x = 18 
=> y = (8/9)18 = 16 
và z = (5/6)18 = 15 

MIK NHA

Thieu Gia Ho Hoang
3 tháng 2 2016 lúc 20:23

ket qua = minh moi hok lop 6

kagamine rin len
3 tháng 2 2016 lúc 20:41

ta có 2x/3=3y/4=4z=2x/3.12=3y/4.12=4z/12=>x/18=y/16=z/3=x+y+z/18+16+3=49/37

=>x=882/37

y=784/37

z=147/37

hdHải
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 23:58

Bài 1:

$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$

$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$

Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$

$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$

$\Leftrightarrow x=y=\frac{-1}{2}$

Akai Haruma
11 tháng 9 2023 lúc 0:00

Bài 2:

$B=x^2+9y^2+4z^2-2x+12y-4z+20$

$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$

$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$

$\Rightarrow B\geq 0+0+0+14=14$

Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$

$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$

Akai Haruma
11 tháng 9 2023 lúc 0:02

Bài 3:

$C=-x^2-26y^2+10xy-20y-150$
$-C=x^2+26y^2-10xy+20y+150$

$=(x^2+25y^2-10xy)+(y^2+20y+10^2)+50$

$=(x-5y)^2+(y+10)^2+50$
Vì $(x-5y)^2\geq 0; (y+10)^2\geq 0$ với mọi $x,y$

$\Rightarrow -C=(x-5y)^2+(y+10)^2+50\geq 0+0+50=50$

$\Rightarrow C\leq -50$

Vậy $C_{\max}=-50$. Giá trị này đạt được khi $x-5y=y+10=0$

$\Leftrightarrow y=-10; x=-50$

Nguyễn Ngọc Hà Linh
Xem chi tiết
Võ Đông Anh Tuấn
6 tháng 6 2016 lúc 10:32

\(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)

             \(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)

              \(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)

Thương Béé's
Xem chi tiết
Thương Béé's
Xem chi tiết