Tìm x,y,z biết x^2+9y^2+z^2= -2x + 12y + 4z -9
CMR ko có số x,y,z thỏa mãn
x^2+9y^2+4z^2-2x+12y-4z+20=0
\(x^2+9y^2+4z^2-2x+12y-4z+20=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\)(1)
Ta thấy\(\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\forall x;y;z\)
Nên dấu (1) không thể xảy ra , Hay \(x;y;z\) ko tồn tại (đpcm)
Tìm x, y, z biết: \(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{24z-8x}{-13};\)\(x^2+y^2+z^2=350\)
Cách giải dùng dãy tỉ số để giải thôi
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{\left(8x-12y\right)+\left(12y-24z\right)}{-7-9}=\frac{8x-24z}{-16}=\frac{24z-8x}{16}\)
Mà theo đề bài thì \(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{24z-8x}{-13}\)
Do đó \(\frac{24z-8x}{-13}=\frac{24z-8x}{16}\Rightarrow24z-8x=0\Leftrightarrow z=\frac{x}{3}\)
Làm tương tự ta cũng được \(8x=12y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Suy ra \(\frac{x}{3}=\frac{y}{2}=z\)và x2+y2+z2=350
Tới đây dùng tính chất dãy tỉ số bằng nhau tính ra x=75,y=50;z=25
Vậy x=75;y=50;z=25
Tìm x,y,z biết:
a) x2+4y2+z2=2x+12y-4z-14
b) x2+3y2+2z2-2x+12y+4z+15=0
Tìm x,y,z bik
a)\(x^2+4y^2+z^2=2x+12y-4z-14\)
b) \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
a. \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
Tìm x y z biết : 2x/3=3y/4=4z và x+y+z=49
Câu trả lời hay nhất: 2x/3 = 3y/4 => y = (4/3)(2x/3) = 8x/9
2x/3 = 4z/5 => z = (5/4)(2x/3) = 10x/12 = 5x/6
=> x + y + z = x + 8x/9 + 5x/6 = 49
hay là
(18 + 16 + 15)x/18 = 49, tu'c là x = 18
=> y = (8/9)18 = 16
và z = (5/6)18 = 15
MIK NHA
ta có 2x/3=3y/4=4z=2x/3.12=3y/4.12=4z/12=>x/18=y/16=z/3=x+y+z/18+16+3=49/37
=>x=882/37
y=784/37
z=147/37
Tìm GTLN (hoặc nhỏ nhất)
A=2x^2+y^2-2xy+x+2
B=x^2+9y^2+4z^2-2x+12y-4z+20
C=-x^2 -26y^2+10xy-20y-150
Bài 1:
$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$
$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$
Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$
$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$
$\Leftrightarrow x=y=\frac{-1}{2}$
Bài 2:
$B=x^2+9y^2+4z^2-2x+12y-4z+20$
$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$
$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$
$\Rightarrow B\geq 0+0+0+14=14$
Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$
$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$
Bài 3:
$C=-x^2-26y^2+10xy-20y-150$
$-C=x^2+26y^2-10xy+20y+150$
$=(x^2+25y^2-10xy)+(y^2+20y+10^2)+50$
$=(x-5y)^2+(y+10)^2+50$
Vì $(x-5y)^2\geq 0; (y+10)^2\geq 0$ với mọi $x,y$
$\Rightarrow -C=(x-5y)^2+(y+10)^2+50\geq 0+0+50=50$
$\Rightarrow C\leq -50$
Vậy $C_{\max}=-50$. Giá trị này đạt được khi $x-5y=y+10=0$
$\Leftrightarrow y=-10; x=-50$
Tìm x, y, z thoả mãn x2+4y2+z2=2x+12y−4z−14
\(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)
\(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)
tìm x,y,z biết a . x/y+z+1 = y/z+x+1 = z/x+Y-2 = x +Y+Z
b, 21x=9y ; 15x=12z và 2x-y+z=33
c . 2x=y-3 = z/5 và 2x + 2y - z/2 = -9
d 1/2x-1 = 2/3y-1 = 3/4z-1 và 3x + 2y - z =4
TỚ CẦN GẤP ! giúp tớ với !
tìm x,y,z biết a . x/y+z+1 = y/z+x+1 = z/x+Y-2 = x +Y+Z
b, 21x=9y ; 15x=12z và 2x-y+z=33
c . 2x=y-3 = z/5 và 2x + 2y - z/2 = -9
d 1/2x-1 = 2/3y-1 = 3/4z-1 và 3x + 2y - z =4
TỚ CẦN GẤP ! giúp tớ với !