Tìm x :
y x 3 + y x 7 = 200
Bài 1: Tìm x,y,z:
a) \(\dfrac{x}{y}\)=\(\dfrac{10}{9}\); \(\dfrac{y}{z}\)=\(\dfrac{3}{4}\); x-y+z =78
b)\(\dfrac{x}{y}=\dfrac{9}{7}\);\(\dfrac{y}{z}\)=\(\dfrac{7}{3}\); x-y+z =-15
c)\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\); x2 +y2+z2=200
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)
bài 1: tìm x, y biết
a, (x-3)^2 +(y + 2)^2 = 0
b,(x-12+y)^200+(x-4-y)^200= 0
Bài 2:cho
A= 3+3^2+3^3+.........+3^2008
Tìm x biết 2A+3=3^x
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
Các bạn ơi chỉ cần trả lời câu 1 thôi cũng được mình làm được câu 2 rồi
Tìm x : (x - y)/3 =(x + y )/13 =( x . y )/ 200
bn vào đây nha: Câu hỏi của lê phương chi - Toán lớp 7 - Học toán với OnlineMath
nhớ t i c k nha!! 5645645757768793452256364565655675776768689845353344565656
Tìm 2 số x và y biết (x-y)/3=(x-y)/13=(x*y)/200
tìm x, y biết
(x+y)/13=(x-y)/3=x*y/200
\(\dfrac{x+y}{13}\) = \(\dfrac{x-y}{3}\) = \(\dfrac{xy}{200}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{xy}{200}\) = \(\dfrac{x+y}{3}\) = \(\dfrac{x+y+x-y}{13+3}\) = \(\dfrac{2x}{16}\)
\(\dfrac{xy}{200}\) = \(\dfrac{2x}{16}\)
\(\dfrac{xy}{200}-\dfrac{2x}{16}\) = 0
\(x\) x (\(\dfrac{y}{200}\) - \(\dfrac{2}{16}\)) = 0
\(x\) = 0 hoặc \(\dfrac{y}{200}\) - \(\dfrac{2}{16}\) = 0 ⇒ y = \(\dfrac{2}{16}\) x 200
y = 25
Nếu \(x\) = 0 ⇒ \(\dfrac{0+y}{13}\) = 0 ⇒ y = 0
Nếu y = 25 thì \(\dfrac{x+25}{13}\) = \(\dfrac{25x}{200}\) = \(\dfrac{x}{8}\)
8\(x\) + 200 = 13\(x\)
13\(x\) - 8\(x\) = 200
5\(x\) = 200
\(x\) = 200 : 5
\(x\) = 40
Vậy (\(x;y\)) = (0; 0); (40; 25)
tìm x, y biết (x-y)/3=(x+y)/13=(xy)/200
tìm x,y
x+y/13= x-y/3=xy/200
Tìm x, y biết:
x - y/3 = x + y/13 = xy/200
\(\frac{x+y}{13}=\frac{x-y}{3}=\frac{xy}{200}\)
\(\Rightarrow3\left(x+y\right)=13\left(x-y\right)\)
\(\Rightarrow y=\frac{5x}{8}\)
\(\frac{x-y}{3}=\frac{xy}{200}\Rightarrow200\left(x-y\right)=3xy\)
\(\Rightarrow200\left(x-\frac{5x}{8}\right)=\frac{3x.5x}{8}\Rightarrow x^2-40x\Rightarrow x\left(x-40\right)=0\)
\(\Rightarrow x=\left[\begin{array}{nghiempt}0\\40\end{array}\right.\)\(\Leftrightarrow y=\left[\begin{array}{nghiempt}0\\25\end{array}\right.\)
Tìm x;y khác 0 biết x+y;x-y;x.y tỉ lệ nghịch với 1/3 ; 3 ; 3/200