Tổng các nghiệm của phương trình:
\(2^{x^2}-1=5^{x+1}\)
Không giải phương trình \(x^2-11x+5=0\) (1)
a, Tính tổng bình phương các nghiệm của phương trình (1)
b, Lập phương trình bậc 2 có nghiệm là nghịch đảo các nghiệm của phương trình (1)
Tìm tổng bình phương các nghiệm của phương trình \(\left(x-1\right)\left(x-3\right)+3\sqrt{x^2-4x+5}-2=0\)
\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)
Đặt \(\sqrt{x^2-4x+5}=t>0\)
\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)
\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)
Cho phương trình: x^2 + 2(m-2)x -(2m-7)=0.Gọi x1,x2 là hai nghiệm của phương trình (1).
Tìm m để phương trình (1) có tổng bình phương (1) có tổng bình phương các nghiệm đạt giá trị nhỏ nhất.
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
3.
Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)
\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)
Mặt khác:
\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)
(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)
Giải chi tiết hộ mk
1.Tổng bình phương các nghiệm nguyên của phương trình \(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
2.Tích các nghiệm của phương trình \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
Cảm ơn nhìu.
1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)
thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau
2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)
đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\
\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau
Nghiệm nguyên.
2x+3=(2x+1)+2
\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)
2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1
\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)
18 không chia hết co 4 vậy vô nghiệm nguyên.
Viết diễn dải dài suy luận logic rất nhanh
câu 2.
\(2\left(x^2+2\right)>0\forall x\) thực tế >=4 không cần vì mình cần so sánh với 0
\(\left(2\right)\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)
Vậy đáp số là (16-25)/4=-9/4
Phương trình ( x + 1 ) 4 - 5 ( x + 1 ) 2 - 84 = 0 có tổng các nghiệm là:
A. - 12
B. -2
C. -1
D. 2 12
Phương trình ( x + 1 ) 4 – 5 ( x + 1 ) 2 – 84 = 0 có tổng các nghiệm là:
A. - 12
B. −2
C. −1
D. 2 12
Phương trình ( x + 1 ) 4 - 5 ( x + 1 ) 2 - 84 = 0 có tổng các nghiệm là:
A. - 12
B. -2
C. -1
D. 2 12
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Câu 1: Phương trình (3,5x−7)(2,1x−6,3)=0 có tổng các nghiệm bằng
A:6 B:3 C:5 D:4
Câu 2: Nghiệm của phương trình 4(3x−2)−3(x−4)=7x+20 là x=a.
Chọn khẳng định đúng:
A:6<a<=8 B:5<a<7 C:7<a<8 D:8<a<=10
Câu 3: Tập nghiệm của phương trình (x−2)(x+2)=0 là :
A:S={-2;2} B:S={2} C:S={vô nghiệm} D:S={-2}
Câu 4: Tổng giá trị các nghiệm của hai phương trình bên dưới là:
(x^2+x+1)(6−2x)=0 và (8x−4)(x^2+2x+2)=0
A:13/5 B:13/2 C:7/2 D:13/3
Câu 5: Các giá trị k thỏa mãn phương trình (3x+2k−5)(x−3k+1)=0 có nghiệm x=1 là:
A:k=2 và k=1 B:k=3 và k=1/2 C:k=1 và k=2/3 D:k=2 và k=1/3
Câu 6: Tập nghiệm của phương trình x^2+3x−4=0 là
A:S={-4;1} B:S={vô nghiệm} C:S={-1;4} D:S={4;1}
Câu 7: Phương trình (3x−2)(2(x+3)/7−(4x−3)/5)=0 có 2 nghiệm x1,x2 Tích x1.x2 có giá trị bằng
A:x1.x2=17/3 B:x1.x2=5/9 C:x1.x2=17/9 D:x1.x2=17/6
Câu 8: Cho phương trình (x−5)(3−2x)(3x+4)=0 và (2x−1)(3x+2)(5−x)=0 .
Tổng giá trị các nghiệm của 2 phương trình trên là:
A:11 B:9 C:12 D:10
Câu 9: Phương trình (3−2x)(6x+4)(5−8x)=0. Nghiệm lớn nhất của phương trình là:
A:x=2/3 B:x=8/5 C:x=3/2 D:x=5/8
Câu 10: Phương trình (4x−10)(24+5x)=0 có nghiệm là:
A:x=5/2 và x=24/5 B:x=-5/2 và x=-24/5 C:x=5/2 và x=-24/5
D:x=-5/2 và x=24/5