Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Nguyễn Thảo
Xem chi tiết
Kan
Xem chi tiết
Tran Le Khanh Linh
24 tháng 2 2021 lúc 20:36

giả sử 3n+19=a2 (\(a\inℕ\)). dễ thấy a chẵn nên \(a^2\equiv0\)(mod 4)

=> 3\(\equiv\)1 (mod 4)

Mặt khắc vì 3\(\equiv\)-1 nên \(3^n\equiv\left(-1\right)^n\)(mod 4)

Vậy n là số chẵn hay n=2m (\(m\inℕ\)) Ta có 32m+19=a2 nên \(\left(a-3^m\right)\left(a+3^m\right)=19\Rightarrow\hept{\begin{cases}a-3^m=1\\a+3^m=19\end{cases}\Rightarrow m=2\Rightarrow n=4}\)

Khách vãng lai đã xóa
Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2021 lúc 18:43

Đặt \(N=3^n+19\)

Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1

\(\Rightarrow\)N không phải SCP

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow\left(3^k\right)^2+19=m^2\)

\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)

Pt ước số cơ bản, bạn tự hoàn thành nhé

JOKER_Mizukage Đệ tứ
Xem chi tiết
Đinh Thùy Linh
4 tháng 7 2016 lúc 0:11

Bài nè không bít có được vào CÂU HỎI HAY của OLM không?

1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.

19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)

Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)Vậy n chẵn và có dạng n = 2k.

2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.

Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)

k = 0 => A = 20 không phải là số chính phươngk = 1 => A = 28 không phải là số chính phươngk = 2 => A = 100 là số chính phương 102k >= 3 thì:

\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)

A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.

3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.

Dang Hoang Mai Han
Xem chi tiết
Yen Nhi
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Khách vãng lai đã xóa
khoa le nho
Xem chi tiết
Giang Trần Văn
10 tháng 10 2018 lúc 13:37

Giang ne

Pham Van Hung
10 tháng 10 2018 lúc 16:59

Đặt \(\hept{\begin{cases}n+19=t^2\\n-57=k^2\end{cases}\left(t,k\in N\right)\Rightarrow\left(n+19\right)-\left(n-57\right)=t^2-k^2\Rightarrow}76=\left(t-k\right)\left(t+k\right)\)

Ta có: \(76=1.76=2.38=4.19\)

Mà t - k và t + k là 2 số cùng tính chẵn lẻ, \(t-k< t+k\)

Nên \(\hept{\begin{cases}t-k=2\\t+k=38\end{cases}\Rightarrow t=\left(2+38\right):2=20}\)

Ta có: \(n+19=t^2\)

Thay t = 20, tính được n = 381

Chúc bạn học tốt.

Vũ Nguyễn Việt Anh
Xem chi tiết
Vananh11062001
Xem chi tiết
Phạm Thế Mạnh
4 tháng 1 2016 lúc 22:34

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

Vananh11062001
4 tháng 1 2016 lúc 22:32

ok pạn Phạm thế mạnh

Nguyễn Quốc Khánh
4 tháng 1 2016 lúc 22:35

ta có

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\)

\(=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]+2\)

\(\left(n^2+3n\right)\left(n^2+3n+2\right)+2\)

Đặt n^2+3n+1=a

=>(a-1)(a+1)+2=a^2-1+2=a^2+1

=>Sai đề

Nếu thấy câu trả lời của mình đúng thì tick nha bạn,cảm ơn nhiều.

nguyễn văn du
Xem chi tiết