Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huy Nam
Xem chi tiết
kem mai
Xem chi tiết
Draken
Xem chi tiết
18. Đào Gia Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 22:58

Bài 1:

a: \(=15x^2-6x+5x-2\)

\(=\left(5x-2\right)\left(3x+1\right)\)

b: \(=4x^2-8x-x+2\)

\(=\left(x-2\right)\left(4x-1\right)\)

Hutao
Xem chi tiết
Thượng Nguyễn
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 1 2022 lúc 22:31

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.

 

Ác Ma
Xem chi tiết
hellooo
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:37

Bài 6:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}=\dfrac{a+b}{41+29}=\dfrac{700}{70}=10\)

Do đó: a=410; b=290; c=300

hellooo
20 tháng 10 2021 lúc 22:39

dạ ko ạ, làm dạng 1 và 2 ạ

TammaoTV
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 21:11

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

Bùi Đỗ Hải Ngân
Xem chi tiết