Tim cap(x;y) \(\varepsilon Z\) de B=-3
\(B=\frac{x^2}{\left(x+y\right)\left(x-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
tim(x;y) biet -|2x+4| -|y+5| lon hon bang 0 .Tim cap (x;y)
Tim cap x ; y :
x . y = 5
x . y = 5
Có 2 TH:
TH1: x = 1 ; y = 5
1 . 5 = 5
TH2: x = 5 ; y = 1
5 . 1 = 5
1 va 5
x co the la 1 hoac 5
y cung co the la 1 va 5
x= 1 hoặc 5
y = 1 hoặc 5
vì nếu như = 0 ; 2;3;4;6; 7; .. thì sẽ ko ra con số trên
nên chỉ có hai số 1 và 5 thỏa mãn đề bài
tim cac cap x,y biet 5^x+9999=20y
tim cac cap so nguyen x,y biet /x/+/y/=-5
|x| + |y| \(\ge0\) nên pt trên vô nghiệm
Ta có
IxI >=0 với mọi x thuộc Z
IyI >=0 với mọi x thuộc Z
=> IxI+IyI >=0 với ọi x,y thuộc Z
Mà -5<0 => Không tồn tại giá trị x,y thỏa mãn đề bài
vì \(\left|x\right|+\left|y\right|\ge0\forall x;y\in Q\)
=> mâu thuẫn với -5
=> x;y\(\in\left\{\varnothing\right\}\)
Tim cac cap so nguyen (x;y) sao cho x*y=x-y
Lời giải:
$xy=x-y$
$\Rightarrow xy-x+y=0$
$\Rightarrow x(y-1)+(y-1)=-1$
$\Rightarrow (x+1)(y-1)=-1$
Với $x,y$ nguyên thì $x+1, y-1$ nguyên. Mà tích của chúng bằng -1 nên ta xét các TH sau:
TH1: $x+1=1, y-1=-1\Rightarrow x=0; y=0$
TH2: $x+1=-1, y-1=1\Rightarrow x=-2; y=2$
Tim cap x ; y :
( x - 1 ) . ( y - 2 ) = 5
( x - 1 ) . ( y - 2 ) = 5
TH1:
x - 1 = 1
x = 1 + 1
x = 2
y - 2 = 5
y = 5 + 2
y = 7
TH2:
x - 1 = 5
x = 5 + 1
x = 6
y - 2 = 1
y = 1 + 2
y = 3
Từ 2 trường hợp vậy x = 2 hoặc bằng 6
y = 3 hoặc bằng 7
x = 2
y = 7
hoặc
x = 6
y = 3
chỉ có 4 số trên thỏa mạn đề bài
=> x = 2 hoặc 6
y = 7 hoặc 3
Tim cap so x ; y biet :
x . ( y - 2 ) = 7
x . ( y - 2 ) = 7
Có 2 TH:
TH1:
x = 1
y - 2 = 7
y = 7 + 2
y = 9
TH2:
x = 7
y - 2 = 1
y = 1 + 2
y = 3
Từ 2 trường hợp trên vậy x = 1 hoặc bằng 7
y = 9 hoặc bằng 3
Cure Beat:
Có 2 trường hợp như bạn Đỗ Đức Đạt vừa nêu
=> x = 1 hoặc 7
y = 9 hoặc 3
Tim cap so x ; y biet :
( x - 1 ) . y = 7
( x - 1 ) , y = 7
Có 2 TH:
TH1
x - 1 = 7
x = 7 + 1
x = 8
y = 1
TH2:
x - 1 = 1
x = 1 + 1
x = 2
y = 7
Tự kết luận nhé
tim cap so nguyen (x, y) sao cho : x+3y=xy+3
\(x+3y=xy+3\)
\(\Leftrightarrow x+3y-xy-3=0\)
\(\Leftrightarrow x-xy+3y-3=0\)
\(\Leftrightarrow x\left(1-y\right)-3\left(1-y\right)=0\)
\(\Leftrightarrow\left(1-y\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)
Vậy phương trình trên bằng nhau xảy ra khi
\(x=3\) và \(y=1\)
tim cap so nguyen x;y biet (x-1).(xy+2)=5
=> x-1 là ước của 5
=> x-1 = 1;-1;5;-5
*Nếu x-1=1
=> x=1+1=2 (1)
xy+2=5 => xy=3 (2)
Từ (1)và (2) => y=3:2 ( loại vì y nguyên )
Tự xét tiếp các trường hợp khác, đi
Ta có: 5 = -1 . -5
5 = -5 . -1
5 = 1 . 5
5 = 5 . 1
Vậy ta có bảng sau:
x - 1 | -1 | -5 | 1 | 5 |
xy + 2 | -5 | -1 | 5 | 1 |
x | 0 | -4 | 2 | 6 |
y | ( vô nghiệm ) | ( thuộc Q ) | ( thuộc Q ) | ( thuộc Q ) |
Vậy là không có số nào thuộc Z hay phương trình vô nghiệm.