Cho a, b, c thuộc R và a,b,c khác 0 thoả mãn b2=ac
CMR: \(\frac{a}{c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\)
(Biết rằng các tỉ số đều có nghĩa)
Cho a,b,c\(\ge\)0 thỏa mãn a+b+c=1008. CMR: \(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le2016\sqrt{2}\)
Cho 3 số không âm a,b,c thỏa mãn a+b+c=1008
Chứng minh
\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2016b+\frac{\left(c-a\right)^2}{3}}+\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le2016\sqrt{2}\)
cho a, b, c là 3 số dương thỏa mãn:
\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\)\(\frac{2016a-b-c}{a}\)
tính: A = \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Công dãy lại => hệ số : \(k=2014\)
Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A
Cho a,b,c là ba số dương, thỏa mãn:
\(\frac{2016c-a-b}{c}=\)\(\frac{2016b-a-c}{b}=\)\(\frac{2016a-b-c}{a}\)
Tính: A= \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
ADTCCDTSBN,TC :
\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\frac{2016a-b-c}{a}\)
\(=\frac{\left(2016c-a-b\right)+\left(2016b-a-c\right)+\left(2016a-b-c\right)}{c+b+a}=\frac{2014.\left(a+b+c\right)}{a+b+c}=2014\)
\(\frac{2016c-a-b}{c}=2014\Rightarrow2016c-a-b=2014c\Rightarrow2c=a+b\)( 1 )
\(\frac{2016b-a-c}{b}=2014\Rightarrow2016b-a-c=2014b\Rightarrow2b=a+c\)( 2 )
\(\frac{2016a-b-c}{a}=2014\Rightarrow2016a-b-c=2014a\Rightarrow2a=b+c\)( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow\)a = b = c
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)+\left(1+1\right)=2^3=8\)
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Cho a,b,c là các số hữu tỉ khác 0, đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).CMR
\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\)hữu tỉ.
cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn \(b^2=ac\).chứng minh rằng\(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
Cho tỉ lệ thức: a. \(\frac{2015a-2016b}{2016c+2017d}=\frac{2015c-2016d}{2016a+2017b}\)
b. \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
c. \(\frac{ab}{cd}=\left(\frac{2a+3b}{2c+3d}\right)^2\)
Đề bài phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2015a}{2015c}=\frac{2016b}{2016d}.\)
\(\Rightarrow\frac{2016a}{2016c}=\frac{2017b}{2017d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2015a-2016b}{2015c-2016d}\) (1)
\(\frac{a}{c}=\frac{2016a}{2016c}=\frac{2017b}{2017d}=\frac{2016a+2017b}{2016c+2017d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}.\)
\(\Rightarrow\frac{2015a-2016b}{2016c+2017b}=\frac{2015c-2016d}{2016c+2017d}\left(đpcm\right).\)
Câu a) mình nghĩ phải chứng minh như thế.
Chúc bạn học tốt!
cho a, b, c khác 0 thỏa mãn b^2=a.c
\(Cmr:\frac{a}{c}=\frac{\left(2016a+2015^1\right)^2}{\left(2016b+2015\right)^2}\)