Giải pt sau : Căn(9-x^2) + căn(x^2 + 3x) =0
Giải pt:
1) Căn(x^2 - x + 2) + 1 = căn(10 - x^2 + x)
2) 4căn(x) - 2 căn(2 - x) + x - 4 căn( 2x - x^2) + 1 =0
3) x^2 + 3x - 1= (x+2) căn(x^2 + x - 1)
4) 3x^2 + 4x + 2 = 3(x+2) căn(x^2 - 1)
Giải pt căn x + 7 + 6 căn x - 3x = 9 - căn 11- x
Giải các pt sau:
1)x- căn 2x-5=4
2)căn 2x² - 8x +4=x -2
3)căn x²+ x -12=8- x
4)căn x² - 3x -2= căn x -3
5)căn 2x + 1=2 + căn x - 3
6)căn x +2 căn x-1 -căn x - 2 căn x-1=-2
7) căn x-2 +căn x+3 =5
8) căn x² -4x +3 + x² -4x =-1
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
4) ĐK: \(x\ge3\)
pt <=> \(x^2-3x-2=x-3\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\left(n\right)\\x=2-\sqrt{3}\left(l\right)\end{matrix}\right.\)
giải pt sau : căn 9x+9 + căn 4x+4 -2 căn 16x+16 = căn x+1-8
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3
Giải pt
Căn (x-3) ×(x^2 -3x+2) =0
Giải pt
a1)1/3 căn x-2 -2/3 căn 9x-18 +6 căn x-2/81 =-4
a2)căn 9x+27 +4 căn x+3 -3/4 căn 16x+48 =0
a3)căn 1-x +căn 4-4x -1/3 căn 16-16x +5=0
a4)căn x-3=3-x
a5)căn x^2-1 -x^2+1=0
b1)căn x^2-2x+1 =x^2-1
b2)căn 4x^2-9 = 2 căn 2x+3
b3)3 căn x^2-1 +2 căn x+1=0
b4)căn x^2-4 +căn x^2+4x+4 =0
b5)căn 4x^2-20x+25 +4x^2=25
Giúp mình với
Giải các pt sau:
a, căn 2 . x - căn 50 =0
b, căn x-5 + căn 4x-20 =3
c, căn x-1 - căn 2x(x-1)=0
d, căn x-2 + căn 4x-8 =0
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618
giải pt: căn (x^2+4x+3)+căn (x^2+x)=căn (3x^2+4x+1)
\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}-\sqrt{\left(x+1\right)\left(3x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+3}+\sqrt{x}-\sqrt{3x+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+3}+\sqrt{x}=\sqrt{3x+1}\end{cases}}\)
Suy ra x=-1 pt còn lại bình lên là thấy vô nghiệm
:)
Giải pt
Căn (x-3) ×(x^2 -3x+2) =0
\(\sqrt{\left(x-3\right)\left(x^2-3x+2\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)x = 3 hoặc x = 2 hoặc x = 1
cái này là \(\sqrt{\left(x-3\right)}\times\left(x^2-3x+2\right)=0\)đúng k bn
√x2+2x+3=x2+2x+11x2+2x+3=x2+2x+11
⇔√x2+2x+3=x2+2x+3+8⇔x2+2x+3=x2+2x+3+8
Đặt √x2+2x+3=t (t≥0)x2+2x+3=t (t≥0)
⇔t=t2+8⇔t=t2+8
⇔t2−t+8=0>0∀t⇔t2-t+8=0>0∀t
Vậy PT vô nghiệm
b1:Giải Pt
a)căn x^2-10x+25=2(căn kéo dài từ x^2 đến 25)
b) căn x^2= 3x-2
c) căn 4x^2-12x+9=x+7(căn kéo dài từ 4x^2 đến 9)
b2:tìm x biết
a) 5x^2=80
b) 2√x=1
c) √3x ≤ 6
B3 tìm x để các căn thức bậc 2 sau có nghĩa:
a) căn 2 phần 9-x
b) căn x^2 + 2x +1
c) căn x^2 -4x