Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super xity
Xem chi tiết
Nguyễn bảo ngoc
Xem chi tiết
super xity
Xem chi tiết
Min
29 tháng 10 2015 lúc 22:03

\(a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab\)

Vì  \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2+2ab\ge2ab\left(dpcm\right)\)

Nguyen Nguyen
Xem chi tiết
Vũ Huy Hoàng
15 tháng 7 2019 lúc 8:20

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

nguyển phương linh
Xem chi tiết
Nguyễn Thị Ngọc Linh
13 tháng 6 2019 lúc 19:19

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

tuấn lê
Xem chi tiết
_Guiltykamikk_
14 tháng 5 2018 lúc 10:39

Trả lời

a^2 + b^2 - 2ab

= ( a^2 - 2ab + b^2 )

= ( a - b )^2 ≥ 0 ( luôn đúng )

Vậy...

Mafia
14 tháng 5 2018 lúc 10:50

\(a^2+b^2-2ab=\left(a-b\right)^2\ge\forall a,b\)

๖Fly༉Donutღღ
14 tháng 5 2018 lúc 19:55

Hằng đẳng thức số 2 \(a^2-2ab+b^2=\left(a-b\right)^2\)

 \(\Rightarrow\left(a-b\right)^2\ge0\)

Vậy \(a^2+b^2-2ab\ge0\left(đpcm\right)\)

super xity
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 3 2021 lúc 20:39

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = b

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 3 2021 lúc 20:41

úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé

2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab

= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )

Sử dụng kết quả ở bài trước ta có đpcm

Đẳng thức xảy ra <=> a=b=1/2

Khách vãng lai đã xóa
phan thuy nga
Xem chi tiết
Minh Quân Ngô
22 tháng 3 2022 lúc 10:14

a,ta có a^2+2ab+b^2=[a+b]^2 lớn hơn hoặc bằng 0

b, a^2-2ab+b^2=[a-b]^2 lớn hơn hưacj bằng 0

Khách vãng lai đã xóa
Nguyễn Thị Phương Hoa
Xem chi tiết