Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Tiến Nghĩa
Xem chi tiết
Trần Thị Mĩ Duyên
26 tháng 2 2020 lúc 20:22

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)

Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)

Khách vãng lai đã xóa
Huyền Trân
26 tháng 2 2020 lúc 20:32

\(\text{Một cách khác}\)

\(\text{Ta có:}\)

\(\frac{ab}{a+b}=\frac{bc}{b+c}\)

\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)

\(\Leftrightarrow ab^2+abc=abc+b^2c\)

\(\Leftrightarrow a=c\left(1\right)\)

\(\frac{bc}{b+c}=\frac{ca}{a+c}\)

\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)

\(\Rightarrow abc+bc^2=abc+c^2a\)

\(\Rightarrow b=a\left(2\right)\)

\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)

\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)

Khách vãng lai đã xóa
Tiểu Qủy
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 8 2020 lúc 9:36

Bài làm:

Ta có: \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\)

\(=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)

\(=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)(Cauchy Schwars)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)

Dấu "=" xảy ra khi: \(a=b=c\)

Khách vãng lai đã xóa
Trí Tiên
7 tháng 8 2020 lúc 9:37

Áp dụng bất đẳng thức Bunhiacopxki ta được 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{\left(a+b\right)^2}{2\left(a+b\right)}+\frac{\left(b+c\right)^2}{2\left(b+c\right)}+\frac{\left(c+a\right)^2}{2\left(c+a\right)}\)

                                                        \(\ge\frac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\ge\frac{12\left(ab+bc+ca\right)}{4\left(a+b+c\right)}=\frac{3\left(ab+bc+ca\right)}{a+b+c}\)( rút gọn 12/4)

   Bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Khách vãng lai đã xóa
Trí Tiên
7 tháng 8 2020 lúc 9:45

làm nốt cách nx 

Áp dụng bất đẳng thức Bunhiacopxki ta được

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

Cộng vế theo vế hai bất đẳng thức trên ta được 

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Khách vãng lai đã xóa
Trần Lê Nguyên Mạnh
Xem chi tiết
Kiệt Nguyễn
23 tháng 8 2020 lúc 21:14

Áp dụng bất đẳng thức Bunyakovsky ta được:          \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)

Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)

Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra a = b = c = 1

Khách vãng lai đã xóa
Nguyễn Đức Nghĩa
Xem chi tiết
Nguyễn Đăng Nhân
24 tháng 2 2022 lúc 17:26

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

Cộng theo vế hai bất đẳng thức trên ta được:

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)

Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Inequalities
28 tháng 12 2020 lúc 20:32

Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho

Khách vãng lai đã xóa
Nguyễn Đức Nghĩa
Xem chi tiết
Nguyễn Đăng Nhân
24 tháng 2 2022 lúc 17:41

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Dễ dàng chứng minh được:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

Khi đó ta được bất đẳng thức:

\(\frac{\left(a+b+c\right)^3}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge\frac{a^3+b^3+c^3+24abc}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\)

Vậy ta cần chứng minh:

\(\frac{a^3+b^3+c^3+24abc}{abc}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge28\)

\(\Leftrightarrow\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge4\)

Theo bất đẳng thức Bunhiacopxki dạng phân thức ta được:

\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}=\frac{a^2+b^2+c^2}{ab+bc+ca}+2\)

Để hoàn thành chứng minh ta cần chỉ ra được:

\(\frac{a^2+b^2+c^2}{ab+bc+ca}+2+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge4\)

\(\Leftrightarrow\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)

Theo bất đẳng thức Cauchy thì bất đẳng thức cuối cùng hiển nhiên đúng.

Như vậy bất đẳng thức được chứng minh. Dấu đẳng thức xẩy ra tại \(a=b=c\)

Khách vãng lai đã xóa
minh
Xem chi tiết
Yim Yim
21 tháng 5 2018 lúc 20:19

\(\frac{\sqrt{ab}}{c+2\sqrt{ab}}=\frac{1}{2}\left(\frac{x+2\sqrt{xy}-z}{z+2\sqrt{xy}}\right)=\frac{1}{2}\left(1-\frac{z}{z+2\sqrt{xy}}\right)\le\frac{1}{2}\left(1-\frac{z}{x+y+z}\right)\)

Tương tự \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)\);\(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(1-\frac{y}{x+y+z}\right)\)

Cộng vế theo vế ta được \(\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\le\frac{1}{2}\left(3-1\right)=1\)

minh
21 tháng 5 2018 lúc 20:29

bạn cho mình hỏi x,y,z là j vậy bạn

minh
21 tháng 5 2018 lúc 20:32

ok, mik hiểu r, cảm ơn bạn nhiều

Nguyễn Văn Kiên
Xem chi tiết
Kiệt Nguyễn
20 tháng 8 2020 lúc 15:50

Bất đẳng thức cần chứng minh tương đương với\(\Sigma_{cyc}\left(\sqrt{5a^2+4bc}-2\sqrt{bc}\right)\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Hay \(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)\(\Leftrightarrow\frac{1}{\sqrt{3\left(a^2+b^2+c^2\right)}}\left(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\right)\ge1\)

Áp dụng bất đẳng thức Cauchy ta có \(2\sqrt{5a^2+4bc}\sqrt{3\left(a^2+b^2+c^2\right)}\le8a^2+3b^2+3c^2+4bc\)\(4\sqrt{bc}\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{4.3\sqrt{bc}.\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\)\(\le\frac{2\left(3a^2+3b^2+3c^2+9bc\right)}{3}=2\left(a^2+b^2+c^2+3bc\right)\)

Cộng theo vế hai bất đẳng thức trên ta được \(2\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}\)\(\le10a^2+5b^2+5c^2+10bc\)

Suy ra \(\frac{10a^2}{2\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\)\(\ge\frac{10a^2}{10a^2+5b^2+5c^2+10bc}\)

Lại có \(10bc\le5b^2+5c^2\)nên \(\frac{10a^2}{10a^2+5b^2+5c^2+10bc}\ge\frac{10a^2}{10a^2+10b^2+10c^2}=\frac{a^2}{a^2+b^2+c^2}\)

Do đó ta được \(\frac{5a^2}{\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{a^2}{a^2+b^2+c^2}\)(1)

Hoàn toàn tương tự, ta được: \(\frac{5b^2}{\left(\sqrt{5b^2+4ca}+2\sqrt{ca}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{b^2}{a^2+b^2+c^2}\)(2) ; \(\frac{5c^2}{\left(\sqrt{5c^2+4ab}+2\sqrt{ab}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{c^2}{a^2+b^2+c^2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1}{\sqrt{3\left(a^2+b^2+c^2\right)}}\left(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\right)\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c 

Khách vãng lai đã xóa
Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 0:05

\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)

\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)

Hà Lê
Xem chi tiết
Thắng Nguyễn
9 tháng 7 2017 lúc 17:24

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

Game Master VN
9 tháng 7 2017 lúc 9:54

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]