Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Quang
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
30 tháng 6 2023 lúc 22:48

`@` `\text {Ans}`

`\downarrow`

`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`

`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`

`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`

`= 0 + 0 + 0 + 0`

`= 0`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`@` `\text {Kaizuu lv uuu}`

Nguyen Tien Hoc
Xem chi tiết
Phin Nguyễn
Xem chi tiết
çá﹏๖ۣۜhⒺo╰‿╯²ᵏ⁹
3 tháng 4 2022 lúc 10:44

a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)

   \(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)

   \(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)

   \(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)

 

  \(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)

  \(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)

  \(Q\left(x\right)=5x^2-3x^3-5x^4\)

  \(Q\left(x\right)=-5x^4-3x^2+5x^2\)

b)

\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)

\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)

\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)

Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

\(=5x+7x^2+4+4-6x^4\)

\(=\) \((12x-4)^2+4\ge4-6x^4\)

Câu c MIK KHÔNG CHẮC LÀ ĐÚNG 

Bùi Lê Đức Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 8:36

1: x^2-9x+8=0

=>(x-1)(x-8)=0

=>x=1 hoặc x=8

2: 3x^2-7x+4=0

=>3x^2-3x-4x+4=0

=>(x-1)(3x-4)=0

=>x=4/3 hoặc x=1

3: 2x^2+5x-7=0

=>(2x+7)(x-1)=0

=>x=1 hoặc x=-7/2

4: 3x^2-9x+6=0

=>x^2-3x+2=0

=>x=1 hoặc x=2

5: x^2+2x-3=0

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

Ng Ngọc
14 tháng 7 2023 lúc 9:08

`@` `\text {Answer}`

`\downarrow`

`1)`

\(x^2 - 9x + 8?\)

\(x^2-9x+8=0\)

`<=>`\(x^2-8x-x+8=0\)

`<=> (x^2 - 8x) - (x - 8) = 0`

`<=> x(x - 8) - (x-8) = 0`

`<=> (x-1)(x-8) = 0`

`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {1; 8}`

`2)`

\(3x^2 - 7x + 4 =0\)

`<=> 3x^2 - 3x - 4x + 4 = 0`

`<=> (3x^2 - 3x) - (4x - 4) = 0`

`<=> 3x(x - 1) - 4(x - 1) = 0`

`<=> (3x - 4)(x-1) = 0`

`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {4/3; 1}`

`3)`

\(2x^2 + 5x - 7=0\)

`<=> 2x^2 - 2x + 7x - 7 = 0`

`<=> (2x^2 - 2x) + (7x - 7) = 0`

`<=> 2x(x - 1) + 7(x - 1) = 0`

`<=> (2x+7)(x-1) = 0`

`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`

Ng Ngọc
14 tháng 7 2023 lúc 9:11

`4)`

\(3x^2 - 9x + 6 = 0\)

`<=> 3x^2 - 3x - 6x + 6 = 0`

`<=> (3x^2 - 3x) - (6x - 6) = 0`

`<=> 3x(x - 1) - 6(x - 1) = 0`

`<=> (3x - 6)(x - 1) = 0`

`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {1; 2}.`

`5)`

\(x^2 + 2x - 3=0\)

`<=> x^2 + 3x - x - 3 = 0`

`<=> (x^2 - x) + (3x - 3) = 0`

`<=> x(x - 1) + 3(x - 1) = 0`

`<=> (x+3)(x-1) = 0`

`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `S = {1; -3}.`

Phạm Đỗ Bảo Ngọc
Xem chi tiết
Lê Ngọc Linh
Xem chi tiết
Phạm Đỗ Bảo Ngọc
Xem chi tiết
Nguyễn Văn Lâm ( ✎﹏IDΣΛ...
13 tháng 8 2021 lúc 13:40

\(a)\)

\(21\left(x+3\right)^3:\left(3x+9\right)^2\)

\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)

\(=7\left(x+3\right):3\)

Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)

\(b)\)

Thay vào ta được:

\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)

\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)

\(=1^4:\left(1^3.1\right)\)

\(=1:1\)

\(=1\)

\(c)\)

Thay vào ta được:

\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)

\(=-6.10.7\)

\(=-420\)

Khách vãng lai đã xóa
Blinkstt
Xem chi tiết
Aikawa Maiya
12 tháng 7 2018 lúc 21:30

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

l҉o҉n҉g҉ d҉z҉
3 tháng 8 2020 lúc 15:25

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )

Khách vãng lai đã xóa
tt7a
Xem chi tiết
Nguyễn Huy Tú
15 tháng 3 2022 lúc 15:46

a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)

b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)

 c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)

Vậy B luôn nhận gtr âm 

h Nguyễn
Xem chi tiết