bài 1. tìm n để đa thức x4-x3+6x2-x+n:x2-x+5
bài 2. thực hiện phép chia (125x3-1):(25x2+5x+1)
Thực hiện phép chia:
a) ( x 3 - x 2 - 5x - 3) : (x - 3);
b) ( x 4 + x 3 - 6 x 2 -5x + 5) : ( x 2 + x - 1).
a) Đây là phép chia ết với đa thức thương x 2 + 2x + 1.
Có thể kiểm tra lại kết quả bằng cách thực hiện nhân hai đa thức (x – 3)( x 2 + 2x +1)
b) Đa thức thương x 2 – 5.
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Tìm n để đa thức x4 -x3+6x2-x+n chia hết cho đa thức x2-x+5
Để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì
\(n-5=0\Rightarrow n=5\)
Vậy để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì \(n=5\)
Thực hiện phép tính:
1)(x3-8):(x-2)
2)(x3-1):(x2+x+1)
3)(x3+3x2+3x+1):(x2+2x+1)
4)(25x2-4y2):(5x-2y)
1) \(\left(x^3-8\right):\left(x-2\right)=\left[\left(x-2\right)\left(x^2+2x+4\right)\right]:\left(x-2\right)=x^2+2x+4\)
2) \(\left(x^3-1\right):\left(x^2+x+1\right)=\left[\left(x-1\right)\left(x^2+x+1\right)\right]:\left(x^2+x+1\right)=x-1\)
3) \(\left(x^3+3x^2+3x+1\right):\left(x^2+2x+1\right)=\left(x+1\right)^3:\left(x+1\right)^2=x+1\)
4) \(\left(25x^2-4y^2\right):\left(5x-2y\right)=\left[\left(5x-2y\right)\left(5x+2y\right)\right]:\left(5x-2y\right)=5x+2y\)
Tìm a để đa thức x 4 - x 3 + 6 x 2 - x + a chia hết cho đa thức x 2 - x + 5
Để có phép chia hết thì số dư phải bằng 0.
Ta có: a – 5 = 0 hay a = 5.
a/ Tìm a sao cho đa thức : x4 – x3 + 6x2 – x + a chia hết cho đa thức: x2 – x + 5
b/ Tính giá trị nguyên của n để giá trị của biểu thức : 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức: 3n + 1
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia: (125x3 + 1) : (5x + 1)
(125x3 + 1) : (5x + 1)
= [(5x)3 + 1] : (5x + 1)
= (5x + 1)[(5x)2 – 5x + 1]] : (5x + 1)
= (5x)2 – 5x + 1
= 25x2 – 5x + 1
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b) Tìm m để đa thức A ( x ) = x 4 – x 3 + 6 x 2 – x + m chia cho đa thức B ( x ) = x 2 – x + 5 có dư bằng 2
A(x) chia cho B(x) có số dư bằng 2. Vậy m – 5 = 2 ⇒ m = 7.