cho tứ giác ABCD gọi I là giao điểm 2 đường chéo. đặt diện tích tam giác AIB là S1 ; diện tích của tam giác CID là S2 ; diện tích của tứ giác ABCD là S.
C/M: \(\sqrt{S_1}+\sqrt{S_2}\le\sqrt{S}\)
Gọi O là giao điểm hai đường chéo của tứ giác ABCD. Cho biết diện tích tam giác AOB bằng 4cm2, diện tích tam giác COD bằng 9cm2.
Tìm giá trị nhỏ nhất của diện tích tứ giác ABCD.
gọi O là giao điểm hai đường chéo của tứ giác ABCD . cho biết diện tích tam giác AOD = \(4cm^2\)diện tích COD = \(9cm^2\). tìm min của diên tích tứ giác ABCD
cho hình chữ nhật ABCD gọi I là giao điểm của 2 đường chéo AC và BD
chứng minh: a,tam giác ACB = tam giác CDA
b,tam giác AIB = tam giác CID
c,AID là tam giác cân
d, cho biết góc CAB = 60 độ, chứng minh tam giác CID là tam giác đều
a: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
b: ABCD là hình chữ nhật
=>AC và BD cắt nhau tại trung điểm của mỗi đường và AC=BD
=>IA=IB=IC=ID
Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
=>ΔAIB=ΔCID
c: ΔIAD có IA=ID
nên ΔIAD cân tại I
d: góc CAB=60 độ
=>góc ICD=60 độ
=>ΔICD đều
Cho tứ giác ABCD , giao điểm 2 đường chéo là O, O chia tứ giác thành 4 tam giác có diện tích đều là các số nguyên. CMR: Tích các diện tích của các tam giác trên là 1 số chính phương.
Tứ giác ABCD có đường chéo AC chia tứ giác thành 2 tam giác có diện tích bằng nhau. Gọi E,F là trung điểm của AB,AC. O là giao điểm của EF và AC. Chứng ming rằng: O là trung điểm của EF.
Tứ giác ABCD có đường chéo AC chia tứ giác thành 2 tam giác có diện tích bằng nhau. Gọi E,F là trung điểm của AB,AC. O là giao điểm của EF và AC. Chứng ming rằng: O là trung điểm của EF.
cho tứ giác abcd gọi m,n lần lượt là trung điểm của ab và dc, đường chéo ac cắt mn tại trung điểm i của mn, chứng minh diện tích tam giác abc bằng diện tích tam giác adc
cho hình thang abcd.Hai đường chéo cắt nhau tại điểm I
a) Haỹ chỉ ra những cặp cạnh tam giác bằng nhau?
b) Biết diện tích tam giác BIC là 10cm2 , diện tích AIB là 4cm2 .Tính diện tích hình thhang ABCD
a) Các cặp cạnh tam giác bằng nhau là:
\(\Delta ABD-\Delta ABC\)
\(\Delta AID-\Delta BIC\)
\(\Delta ADC-\Delta BCD\)
b) \(S\Delta ABC=S\Delta AIB+S\Delta BIC=14\left(cm^2\right)\)
\(S\Delta AID=S\Delta BIC=10\left(cm^2\right)\)
\(\Delta AIB\) và \(\Delta BIC\) có chung chiều cao hạ xuống từ \(B\) xuông \(AC\) nên ta có tỉ số:
\(\dfrac{AI}{IC}=\dfrac{4}{10}=\dfrac{2}{5}\)
\(S\Delta DIC=\dfrac{5}{2}S\Delta AID=\dfrac{5}{2}.10=25\left(cm^2\right)\)
Diện tích hình thang \(ABCD\) là:
\(4+10+10+25=49\left(cm^2\right)\)
Vậy diện tích hình thang \(ABCD\) là: \(49cm^2\)
Cho hình thoi ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA Chứng minh tứ giác EFGH là hình chữ nhật B cho hai đường chéo AC=8cm BD=10 cm I là giao điểm của ac và bd tính diện tích hình tam giác ABI nhanh nhe mình cần gấp ạ
Xét tam giác ABD:
E là trung điểm AB (gt).
H là trung điểm AD (gt).
\(\Rightarrow\) EH là đường trung bình.
\(\Rightarrow\) EH // BD; EH = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (1)
Xét tam giác CBD:
F là trung điểm BC (gt).
G là trung điểm CD (gt).
\(\Rightarrow\) FG là đường trung bình.
\(\Rightarrow\) FG // BD; FG = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (2)
Xét tamgiacs ACD:
H là trung điểm AD (gt).
G là trung điểm CD (gt).
\(\Rightarrow\) HG là đường trung bình.
\(\Rightarrow\) HG // AC (Tính chất đường trung bình).
Mà AC \(\perp\) BD (Tứ giác ABCD là hình thoi).
\(\Rightarrow\) HG \(\perp\) BD.
Lại có: EH // BD (cmt).
\(\Rightarrow\) EH \(\perp\) HG.
Từ (1) và (2) \(\Rightarrow\) EH // FG; EH = FG.
\(\Rightarrow\) Tứ giác EFGH là hình bình hành (dhnb).
Mà EH \(\perp\) HG (cmt).
\(\Rightarrow\) Tứ giác EFGH là hình chữ nhật (dhnb).
b) Tứ giác ABCD là hình thoi (gt).
\(\Rightarrow\) AC cắt BD tại trung điểm mỗi đường (Tính chất hình thoi).
Mà I là giao điểm của AC và BD (gt.)
\(\Rightarrow\) I là trung điểm của AC và BD.
\(\Rightarrow\left\{{}\begin{matrix}AI=\dfrac{1}{2}AC=\dfrac{1}{2}.8=4\left(cm\right).\\IB=\dfrac{1}{2}BD=\dfrac{1}{2}.10=5\left(cm\right).\end{matrix}\right.\)
Xét tam giác ABI: AI \(\perp\) BI (AC \(\perp\) BD).
\(\Rightarrow\) Tam giác ABI vuông tại I.
\(\Rightarrow S_{\Delta ABI}=\dfrac{1}{2}AI.IB=\dfrac{1}{2}.4.5=10\left(cm^2\right).\)
\(\perp\)