Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Nhật Huỳnh
Xem chi tiết
Phương An
30 tháng 10 2016 lúc 10:58

\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)

\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)

\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(S=2\times\left(1-\frac{1}{100}\right)\)

\(S=2\times\frac{99}{100}\)

\(S=\frac{99}{50}\)

Phương Anh (NTMH)
30 tháng 10 2016 lúc 11:02

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)

Minamoto Sakura
30 tháng 10 2016 lúc 10:57

/hoi-dap/question/115788.html Giúp mik vs\

 

Nguyễn Thị Quỳnh Trang
Xem chi tiết
Trần Trương Quỳnh Hoa
26 tháng 12 2015 lúc 11:24

tham khảo câu hỏi tương tự nha bạn

Xuandung Nguyen
Xem chi tiết
Minh Hiền
22 tháng 2 2016 lúc 10:55

A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5

= 1 - 1/5

= 5/5 - 1/5

= 4/5

GPSgaming
Xem chi tiết
Long Lạnh Lùng
5 tháng 5 2017 lúc 20:28

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)

\(\frac{2}{1}\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{2}{1}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{2}{1}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{2}{1}.\frac{49}{100}\)

\(\frac{98}{100}=\frac{49}{50}\)

An Hoà
5 tháng 5 2017 lúc 19:47

Đặt A = \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)

 A : 2 =  \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

 A : 2 = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

 A : 2 = \(\frac{1}{2}-\frac{1}{100}\)

 A : 2 = \(\frac{49}{100}\)

    A   = \(\frac{49}{50}\)

nguyen the hung
5 tháng 5 2017 lúc 19:48

Đặt \(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)

\(\Rightarrow A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A=2.\frac{49}{50}\)

\(\Rightarrow A=\frac{49}{25}\)

Trần thị mai Chi
Xem chi tiết
Ngoc Han ♪
2 tháng 2 2020 lúc 14:40

Đặt tổng trên là A , ta có :

\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)

\(A=\frac{99}{100}.2\)

\(A=\frac{99}{50}\)

Khách vãng lai đã xóa
Trương Hoàng Lân
Xem chi tiết
Le Thi Khanh Huyen
12 tháng 7 2016 lúc 9:14

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=2.\frac{49}{100}\)

\(=\frac{49}{50}\)

Nico Robin
12 tháng 7 2016 lúc 9:13

= 2.(1/2.3 + 1/3.4 + ... + 1/99.100)

trong ngoac co cong thuc do, tim hieu di la lam dc

Dương Đức Hiệp
12 tháng 7 2016 lúc 9:30

\(2\cdot A=2\cdot\left(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{99\cdot100}\right)\)

\(2\cdot A=\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+\frac{4}{4\cdot5}+...+\frac{4}{99\cdot100}\)

\(2\cdot A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(2\cdot A=1-\frac{1}{100}\)
\(2\cdot A=\frac{99}{100}\)

\(A=\frac{99}{100}:2=\frac{99}{200}\)

công chúa chipu
Xem chi tiết
phạm nghĩa
9 tháng 5 2016 lúc 15:23

Đặt biểu thức trên là A

Ta có: A =(1^2 . 2^2 . 3^2 . 4^2)/(1.2.2.3.3.4.4.5)

              = [(1.2.3.4).(1.2.3.4)] / [(1.2.3.4).(2.3.4.5)]

               = 1/5

Vậy A = 1/5

Uzumaki Naruto
9 tháng 5 2016 lúc 15:24

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)

=\(\frac{1}{5}\)

Sorano Yuuki
Xem chi tiết
Nguyễn Huy Hào
23 tháng 5 2017 lúc 18:07

sorry mình nhầm

ta có:

M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)

=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)

=\(\frac{1}{5}\)

vậy M=\(\frac{1}{5}\)

Đào Trọng Luân
23 tháng 5 2017 lúc 17:54

\(M=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)

Nguyễn Huy Hào
23 tháng 5 2017 lúc 18:03

ta có:

\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).

Hồ Thu Giang
Xem chi tiết
loz
9 tháng 3 2017 lúc 20:50

1/6 nhe

bao than đen
9 tháng 3 2017 lúc 20:51

\(=\frac{1}{6}\)

Đảo Rồng
9 tháng 3 2017 lúc 20:52

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}.\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\cdot\frac{5^2}{5\cdot6}\)

\(=\frac{1\cdot1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot5}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot6}\)

\(=\frac{1}{6}\)