Cho a là số nguyên. CMR: |a| < 5 <=> -5 < a < 5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a là số nguyên CMR
/a/<5 suy ra -5 < a <5
Ta có:|a|<5
=>|a|\(\in\){4,3,2,1,0}
=>a\(\in\){-4,-3,-2,-1,0,1,2,3,4}
Vậy -5<a<5(đpcm)
cho a là số nguyên .CMR :|a|<5 khi và chỉ khi -5<a<5
a thuộc(-4,-3,-2,-1,0,1,2,3,4)
=>GTTĐ của a sẽ luôn nhỏ hơn 5
Vì \(\(|a|<5\) \(\Leftrightarrow\)\(\(-5 <a <5\)\)
\(\Rightarrow\)a \(\in\)\(\({1 , -1 , 2 , -2 , 3 , -3 , 4 , -4 }\)\)
Vì a thuộc những số bé hơn 5
\(\Rightarrow\)| a | < 5
Bài 1:Cho a là số nguyên .CMR IaI<5 <=>-5<a<5
Ta có: a thuộc Z và IaI<5.
Mà I5I=5 hoặc I5I=-5 => đpcm.
Cho a là số nguyên. CMR: |a|<5 \(\Leftrightarrow\)-5<a<5
Do IaI<5 => IaI thuộc {0;1;2;3;4]=> a thuộc {-4;-3;-2;-1;0;1;2;3;4}
Vây........... bn tự lết luận
Cho a,b,c,d là các số nguyên thỏa mãn: 3a^5 + 3b^5 − 2c^5 − 7d^5 = 0 . CMR: a+b −4c − 9d ⋮ 5
Cho a,b,c,d là các số nguyên thỏa mãn: 3a^5 + 3b^5 − 2c^5 − 7d^5 = 0 . CMR: a+b −4c − 9d ⋮ 5
Cho a,b,c là số nguyên. CMR: Nếu a+b+c chia hết cho 30 thì a^5+b^5+c^5 chia hết cho 30
Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30.
=> a^5 - a chia hết cho 30
=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*)
Do (a+b+c) chia hết cho 30
(*) => (a^5+b^5+c^5) chia hết cho 30
Đó là câu trả lời đúng.hihi :)
Ta xét (a^5 -a) + (b^5 -b) + (c^5 -c)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30.
=> a^5 - a chia hết cho 30
=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*)
Do (a+b+c) chia hết cho 30
(*) => (a^5+b^5+c^5) chia hết cho 30
Ta có :a^5-a=a(a^4-1)=a(a^2-1)(a^2+1)=a(a-1)(a+1)(a^2-4+5)
=a(a-1)(a+1)(a^-4)+5a(a+1)(a-1)
=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1)
Vì (a-2)(a-1)a(a+1)(a+2) là tích của 5 số hạng liên tiếp
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Lại có (a-2)(a-1) là tích của hai số liên tiếp =>(a-2)(a-1) chia hết cho 2 => (a-2)(a-1)a(a+1)(a+2) chia hết
Mà (2;5)=1 => (a-2)(a-1)a(a+1)(a+2)+ 5a(a+1)(a-1) chia hết cho 30
Hay a^5-a chia hết cho 30 (1)
CMTT ta được: b^5-b chia hết cho 30 (2)
c^5-c chia hết cho30 (3)
Cộng (1),(2),(3) ta được a^5+b^5+c^5-(a+b+c) chia hết cho 30
Mà (a+b+c) =0
Luôn chia hết cho 30
=>a^5+b^5+c^5 chia hết cho 30
Vậy a^5+b^5+c^5 chia hết cho 30
Cho a là số nguyên . CMR: |a| bé hơn 5 khi và chỉ khi -5 bé hơn a bé hơn 5
Cho M = (√a + 6)/(√a + 1)= (√a +1 + 5)/(√a + 1)= 1 + 5/(√a + 1) a)Tìm a thuộc Z để M thuộc Z b) cmr với a = 4/9 thì là số nguyên c) Tìm các số hữu tỉ a để M là số nguyên
a: Để M là số nguyên thì 5 chia hết cho căn a+1
=>căn a+1 thuộc {1;5}
=>a thuộc {0;4}
b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)
=>M là số nguyên
c: \(\sqrt{a}+1>=1\)
=>\(\dfrac{5}{\sqrt{a}+1}< =5\)
=>M<=6
\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)
=>2<=M<=6
M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)
=>\(\dfrac{5}{\sqrt{a}+1}=1\)
=>căn a+1=5
=>căn a=4
=>a=16
M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)
=>căn a+1=5/2
=>căn a=3/2
=>a=9/4
M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)
=>căn a+1=5/3
=>căn a=2/3
=>a=4/9
\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)
=>căn a+1=5/4
=>căn a=1/4
=>a=1/16