Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yến Nguyễn
Xem chi tiết
Nguyệt
6 tháng 11 2018 lúc 16:59

\(\Leftrightarrow\left(a^{2016}+b^{2016}\right).\left(c^{2016}-d^{2016}\right)=\left(a^{2016}-b^{2016}\right).\left(c^{2016}+d^{2016}\right)\)

\(\Leftrightarrow ac^{2016}-ad^{2016}+bc^{2016}-bd^{2016}=ac^{2016}+ad^{2016}-bc^{2016}-bd^{2016}\)

\(\Leftrightarrow-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\)

nếu \(-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}=0\)

\(\Rightarrow ad^{2016}-bc^{2016}=0\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\left(1\right)\)

nếu \(\text{​​}-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\ne0\Rightarrow ad=-bc\Rightarrow\frac{a}{b}=-\frac{c}{d}\left(2\right)\)

từ (1) và (2) => đpcm

Yến Nguyễn
6 tháng 11 2018 lúc 19:35

Cho mình hỏi đpcm là gì vậy ? 

Hoang Tan Dung
Xem chi tiết
Hoang Tan Dung
6 tháng 11 2016 lúc 22:41

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)

\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)

\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\)  hoặc y+z=0

Do đó ta có B=0

nguyễn đình thành
Xem chi tiết
Hùng Lê
Xem chi tiết
Hùng Lê
Xem chi tiết
Phan Văn Phước
10 tháng 10 2016 lúc 12:27

e ơi e nên tải tài liệu của võ quốc bá cẩn đi 

Tôi Là Ai
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
Cô Hoàng Huyền
8 tháng 5 2017 lúc 14:49

Ta có

 \(2016A=\frac{2016^{2017}+2016}{2016^{2017}+1}=\frac{2016^{2017}+1}{2016^{2017}+1}+\frac{2015}{2016^{2017}+1}=1+\frac{2015}{2016^{2017}+1}\)

\(2016B=\frac{2016^{2016}+2016}{2016^{2016}+1}=\frac{2016^{2016}+1}{2016^{2016}+1}+\frac{2015}{2016^{2016}+1}=1+\frac{2015}{2016^{2016}+1}\)

Do \(\frac{2015}{2016^{2017}+1}< \frac{2015}{2016^{2016}+1}\Rightarrow2016A< 2016B\Rightarrow A< B.\)

Cristiano Ronaldo
8 tháng 5 2017 lúc 14:57

B = \(\frac{2016^{2015}+1}{2016^{2016}+1}\)< A =\(\frac{2016^{2016}+1}{2016^{2017}+1}\)

Alayna
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 11 2016 lúc 18:05

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)

(áp dụng tính chất dãy tỉ số bằng nhau)

Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)

\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)

Ann Nhiiên
Xem chi tiết