CMR x+y+z= 0 thì x^3 + y^3 + z^3 = 3xyz
Cho A = x3 + y3 + z3 - 3xyz CMR : x + y + z = 0 thì A = 0
Ta có : x + y + z = 0 => x + y = -z => (x + y)3 = (-z)3
=> x3 + 3x2y + 3xy2 + y3 = (-z)3
=> x3 + y3 + z3 + 3x2y + 3xy2 = 0
=> x3 + y3 + z3 + 3xy(x + y) = 0
Mà x + y = -z
Nên : x3 + y3 + z3 + 3xy(-z) = 0
=> x3 + y3 + z3 - 3xyz = 0
=> A = 0
Vậy x + y + z = 0 thì A = 0 (đpcm)
Từ:
x + y + z = 0
=> x + y = -z
<=> (x + y)^3 = (-z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2
<=> x^3 + y^3 + z^3 = -3xy(x+y)
<=> x^3 + y^3 + z^3 = -3xy(-z)
<=> x^3 + y^3 + z^3 = 3xyz
P/s: Tham khảo nha
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)
\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow x+y+z=0\)
Cho x+y+z =0.CMR: x^3+y^3+z^3=3xyz
Cho x+y+z=0
Cmr x^3+y^3+z^3=3xyz
Ta có x3 + y3 + z3 - 3xyz=\(\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y\right)^2-z\left(x+y\right)+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz-3xy\right)=0\)
Vì x3 + y3 + z3 - 3xyz=0 nên x3 + y3 + z3=3xyz
Cho x+y-z=0.cmr \(x^3+y^3-z^3=-3xyz\)
x + y - z =0 --> x + y = z
Đặt : A = x3 + y3 - z3
Ta có : A= x3 + y3 - z3
A= ( x + y)3 - 3xy(x + y) - z3
A = ( x + y - z).[( x+y)2 + ( x+ y).z + z2] - 3xy(x+y)
Thay x + y = z vào A ta có :
A = ( z - z).( z2 + z.z + z2 ) - 3xyz
A = 0.( z2 + z.z + z2 ) - 3xyz
A= -3xyz ( đpcm )
Chứng minh rằng :
a. ( x + y + z )^3 -x^3 - y^3 -z^3 = 3(x+y)(y+z)(x+z)
b. Nếu x + y + z = 0 thì x^3 + y^3 + z^3 = 3xyz
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
Cho x+y+z=0. CMR: x3+y3+z3=3xyz
x+y+z= 0
x+y=-z
(x+y)^3 =-z^3
x^3 +y^3 +3xy(x+y) =-z^3
x^3 +y^3 +3xy(-z) =-z^3
x^3 +y^3 -3xyz =-z^3
x^3 +y^3 + z^3 =3xyz => dpcm
Cho x+y+z=0. CMR: x3+y3+z3=3xyz
Ta có: \(x+y+z=0\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)
\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)=3xyz\)(đpcm)
x+y+z=0 . CMR: x3+y3+z3=3xyz
x+y+z=0
<=>x+y=-z
<=>x^3+3xy(x+y)+y^3=-z^3
<=>x^3+y^3+z^3=-3xy(x+y)
Mà x+y=-z
=>đccm
cho x+y-z=0.cmr \(x^3+y^3-z^{^3}=-3xyz\)